When d(d¢/dnh)/dnh >0 or dznh/dzb2 < 0, the slope of the wave front increases
without limit.

Leaving aside for the time being the question of the width of the sta-
tionary "shock" wave, let us determine the velocity of this wave. From (1) and
(2) we can obtain the conservation laws and the veloclity of the jump

R 2
m n, mv, (Ll)
D avo\/ ey ._;_ » 5 = e(bmux .

oh

Here v, 1s the maximum velocity of the particles for the given dlstrlbutlon
function.

The lower bound of the width of the jump, (M/m)l/zrde,

stipulating that the spectrum of the ion-acoustic oscillations have time to be-
come established within the jump.

can be obtained by

As already noted, the condition for the formation of the "shock wave" im-
poses limitations on the n(¢) dependence, which is determined from the velocity
distribution functions of the hot particles. Thus, for example, for a Max-
wellian distribution d(d¢/dnh)/dnh < 0 no stationary wave is formed, and the

front spreads out in accordance with the self-similar solution (x/t). TFor dis-
tribution functions having a steeper decrease (for example, for a Mazwellian
distribution in the form of a step), we have

<@

mvZ g2 3ny
nh~ ed+ ) ) , ——5?

and a discontinuity is formed. In the general case, the distribution functions
can lead to a complicated n(¢) dependence, when both steepening and spreading
can occur on different sections of the front. In principle, the shape of the
front can yield information concerning the form of the distribution function
of the hot electrons. Thus, the propagation of heat in a collisionless plasma
will be realized by the foregoing mechanism and can be accompanied by the for-
mation of a wave with a steep front. A similar effect may turn out to be quite
important for plasma heating by a powerful relativistic beam.
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Considerable progress was made recently in the study of the N-point Vene-
ziano amplitudes BN. Mandelstam [1] and Olesen [2, 3] have shown that BN can

be factored if the intersections of the Regge trajectories depend bilinearly
on the additive "quantum numbers" bi of the external particles.
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The conditions for the compatibility of the connection between the tra-
jectories and the external particles leads to conservation of these "quantum
numbers ," Z§=lbi = 0, but makes it necessary to assign to identical external
particles quantum numbers bi of both signs simultaneously.

We consider in this paper the factoring of the Veneziano amplitude for a
specified finite set of trajectories. As usual, 1t is assumed that all the
particles, both external and resonances, lie on these trajectories, which have
a universal slope ao'.

Assume that we have 2n trajectories, each of which is set in unique cor-
respondence with a set of n "quantum numbers" {T%},7% = +1, o = 1, 2, ..., n.

In order that the Regge trajectories in any of the dual channels (i, j) of
the amplitude BN be uniquely determined from the "gquantum numbers" of the ex-
ternal particles, it suffices to stipulate the satisfaction in each channel of
the conditions

i
a a

kn T = Tap e (1)

-

where {T%ij)} are the "guantum numbers" corresponding to the Regge trajectory
in the channel (i, j).
We denote by e (W =5, 6, ..., o 4 3) the non-coinciding products of the

"quantum numbers” T% of the Regge trajectory, and put 6" =1 at yu = 1, 2, 3, 4.
Then, in the general case, the intersection for any Regge trajectory in the
(1, j) channel is written in the form

+3 I (2)

where k are the indices of the external particles of the block. It is obvious

that the B“ are linear combinations of the intersections of 2" (specified) dif-
ferent trajectories. ’

The amplitude can be factorized if the linear combinations of the inter-
sections

Cl{ = Akf"’AkH,(- 1 'Aku,[ ‘Ak,l.;l
can be represented in the bilinear form
- [}
C;£=2a' b3 dﬁdl,
L=s

where dﬁ and dz pertain to blocks I and II in the figure, respectively.

For the Akz intersections in the form (2) we have
+3 A1
= = A0 ¥ a-cha-cfn (3)
n=s s=k+1
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We introduce now (29 - 1)~dimensional "momenta'

= VAR 1=G)  u= 5,6, 27 +3). (1)

The exponents in the Bardakci-Ruegg formula for the amplitude BN'take the
form (A - intersection of trajectory for which all ¢ = 1):

$oy "+3 i -1
Vb == I Php, - I Bk M GHIGE T 6Y)-
pu=1 u=s s=k+1 tmj+1l
(5)
-8 (.12 A)

and obviously the amplitude BN is completely factorized. It is clear that in
this case the degree of degeneracy of the levels o(s) = J depends on the number
of "quantum numbers" {T®}. 'The asymptotic level density is

2 t————
d(J )~ exp [__'I. V" + 3)JJ
NG :

It is easy to generalize the Fubini-Gordon-Veneziano operator formalism
[4] to the foregoing case of o gifferent Regge trajectories. Besides the
usual operators ar,u (p =1, 2, 3, 4) we introduce additional (2n - 1) sets of
operators 2. u (u=25, 6, ..., 2% = 1) corresponding to the additional compo-

nents of the momentum pu. Then the vertex operators and the propagators are
written in the form »

o o0 d,: A . ] a
- = ’
-1 4 i 1ik =0 jiexp o T — [Qexp Pp X —
re1y/r el '
N 2"+ 3 1 A
Dy, = T 8[6’2, 6h fdtzut((l—ug)A_z ,
pel °
ey
i | 1, 1 where 1 n
frp=—(le T TATETE)
2 a=1 !
A 43 [T s
-— . = +
Qi—- 11 (G,)u ’ h”_ = 25’r,u.ar.u.'
we 1 re=1
1 64 =06,
816%; G\ 1 = b
0 Gptch
Rp=-A- 103 + % rat
‘¢=- —_pt + 2 ra;'vﬂarq”
2 re-1
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The factor eijk in the vertex operator ensures satisfaction of the condi-

tion (1) at each vertex. The need for introducing the factor Q. is dictated

by the presence of the product J
é-1 .
é?k+1Gs
in the second term of the right side of (5): these factors arise automatically

in Yok when the operators VDY...0¥ are reduced to the normal product.

Thus, 1In the case considered by us the Veneziano amplitude B,, can be fac-

N
torized for any N for a finlte number (2™) of different main trajectories, in
contrast to the case considered by Olesen [3], where the spectrum of the main
trajectories is infinite.

The authors are sincerely grateful to Yu.K. Krasnov for useful discussions.
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1. The distribution of high-energy particles in the plasma surrounding the
earth is usually unstable. This leads to self-excitation of different types of
electromagnetic waves. TFor example, as a result of cyclotron instability of
the protons of the radiation belt, Alfven waves are excited and are observed on
the earth in the form of geomagnetic pulsations 1n the region of ~1 Hz (see the
review [11).

It is important that the instability has as a rule a convectlive character.
The generation arises therefore, for example, in those cases when the wave
packet has an opportunity of crossing many times the region of interaction with
the resonant particles. For Alfven waves, such a possibility is afforded by
the magnetic focusing and reflection of the waves from the lonosphere on oppo-
site ends of the force tube.

Magnetosonic waves are not subject to magnetic focusing, so that their
trajectories are rather complicated curves. In the general case these waves
leave the resonant region rapidly. We shall attempt, however, to find condi-
tions that permit a prolonged interaction between magnetic sound and high-
energy particles.

2. We consider first rays lying in the plane of the geomagnetic equator

(transverse propagation). Obviously, the necessary condition is that the
curvature of the ray be equal to the curvature of the drift shell. Tt is easy
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