d’a(e-»e+',) 1 ( a )2 l’f; *l—l 1 m4p

dsdt dk? 16 20 Lag] (s -M?)? Kik? +mi ) "
(1ee(1-0""ak?) >
x —— Istu - HMP K22 < pD) - M2 + D)2y (6)
[s2-25(M> ~k2) +(M? +4%)%)/7 4
Here €(1 - €)7' = 2[(so - s)(s0 - M*) - sok®][s? - 2s(M?® - k2) + (M* + k?)%]7!,
€ 1s the usual degree of transverse llnear polarlzatlon of the VLrtual photon
[11, so = -(k, + p)?, k? = (ky - Xk ) s +t+u=2M + u? - k2, and k; and kg

are the momenta of the initial and flnal electrons.

The fact that the indicated processes are described by a single amplitude
a(k?), and a study of reactions with linearly polarized photons yields no new informa-
tion, detracts somewhat from the possibility of verifying the hypothesls of
vector dominance under the assumptlon that the amplitude is independent of k?
The value of the constant f2 /Hﬂ obtained as a result of measuring the cross

sections (3) and (5) can be only compared with the value extracted from data,
and can be used to predict the cross sectlon (6) On the other hand, if we
forego the independence of the amplitude of k2 , then an attempt can be made to
recon01le the values of the cross sections (32 (5), and (6) by approximating

a(k?) by some very simple dependence, say a(k ) = ao + aik® Alternately, by
measuringla(k )| for spatially similar k° and k? = 0 it is p0351b1e, %1ven gde—
quate statistics, to attempt to extrapolate these data to the point k° = -m”,

in analogy with the procedure used to determlne the mr-scattering cross section.
Finally, the question remains of whether a(k?) 1s to be regarded as a function
of the variables s and t or of the variables v = kp/M and t) besides being a
functlon of k? (the changeover from s to v introduces an additional dependence
on k2, since s = M?> - k% — 2Mv).

The author thanks A.I. Azimov, A.M. Baldin, V.B. Berestetskii, A. Bialas,
0.B. Gerasimov, V.N. Gribov, V.I. Oglevetskii, L.B. Okun', and Ya. Smorodinskii
for useful discussions.
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In [1] there was consldered the Hubbard model with large Coulomb repul-
slon for one atom, and account was taken of the orbital angular momentum of the
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electron. In second order perturbation theory, this model leads to the Hamil~
tonian

HsIZP .. . (1)
r,a

The action of the operator P o is as follows: ,¢rw ¢ w (the func-

tions ¢ and ¥ are characterlzed here by definite proaectlons of the spin and of

the orbital angular momentum). In particular, if L = 0, it is necessary to con-

sider only two types of states (s__ﬁ = £1/2), and then P, _, = 2§r§r, + 1/2. The
E]

antiferromagnetic character of the ground state is obvious in this case. How-

ever, 1f L # 0, the number of competing states is ‘increased to six (L = 1),

ten (L = 2), ete.

It is usually assumed that the orbital momenta are quenched in the crystal.
However, if the crystal fields acting on the electron are small compared with
the exchange energy I, then the angular momentum of the electron is weakly
coupled to the lattice. We shall consider preclsely this possibility.

It is quite obvious that the energy of the ground state of the Hamiltonian
(1) decreases with increasing number of competing states. Thus, if the number
of these states coincides with the number of nodes, then the energy of the
ground state is equal to -NI. At the same time, there 1s a known exact result
for a one-dimensional chain with L = 0 [2, 3]. The energy of the ground state
is -NI(2 1n 2 - 1).

We derive in this paper equations for the energy spectrum of a one~dimen-
sional system with three competing states. The ground-state energy of such a
system 1s lower than the corresponding energy of an ordinary antiferromagnetic
chain by an amount ~0.3NI. This indicates that the presence of an orbital
angular momentum and of weak crystal fields leads to a new type of "antiferro-
magnetic" state.

Let us consider a one-dimensional chain with Hamiltonian (1) and three
possible single-node states. It can obviously be regarded as a chain of spins
S = 1 with Hamiltonian

{ = 2 .
H lz[(sis,,,\ + (8,8, . -1 (2)

(we have put I = 1). Unlike the Heisenberg antiferromagnet, Eq. (2) contains
terms ( j+l) We assume for the conditional ferromagnetlic vacuum the state

in which all the spin projections are equal to unity. The spin deviations can
be written with the aid of the creation and annihilation operators

8% ==1>, = o/ | bok >, (3)

|S'=0>i=b;|bok>i. (1)

A1l the remaining matrix elements of the operators a and b, pertaining to one
node, except those adjoint to (3) and (4), are equal to zero. The operators
pertaining to different nodes commute.

We seek the eigenfunctions of the problem in the form
: ’ d +* + 4’ +
¥ = 2f(my.., lil My, eess mMz)a"'xm a"’Mlb"'l oo mezl bak (5)
The amplitudes f are symmetrical with respect to each gfoup indices, we can
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therefore assume m; < my < ... < My and m{ < m} < ... < mﬁ . In addition, we
1 2

put M; < My < N - M; - Mz, which does not limit the general character of the
problem. ‘

Following Bethe, we predefine the unphysical amplitudes

flam el W)+ flaemrl,m+ 1| W) = 2f(eem m+ 1aae | ond), (6)
flowel eomyma) +F (0 wemt 1, m+ 1) =2f (| wem,mt1..), (61)
fFloamad wme) 2 f0 o m+1  bam+ln) = Flame ! oom=~10) +flam+ ] cama). 7N

The equatlons for the determination of the elgenvalues then simplify to

{E—(N—2M3-2M:)lf(m1 . lilzm;A...,m‘Mj)»: p3 flam, ~a oy (8)
’ Sy a=rl
but unphysical amplitudes appear in them, and therefore some of the eigenvalues
of E corresponds to unphysical states; these, however, are readily accounted
for.

We seek the solutions of (8) in the form of an expansion in plane waves

e Q
, - -y 1 Mi+M .
f(ml.....me!mi....,mMz) =% {p By 14M 2expli 'S.kPiin b, (9)

1
i Pl 1 2 i

It turns out that the problem is similar to that considered in [4] and [5].
Omitting the intermediate steps, we present the final results in the limit as
N + o, Mj > o, and M, » «:

1 ; A BlE)dE 27 ¥ (n)dn
T = 2melé)+ 4 ————— -2 [ — g
14! A 44 (E-697 B 1+(£-n) (10)
B YinT)dp’ A $(£)dE
C=20¢(m) + 4 ) ——— -2 ’ (11)
-8 4:(n~-n’)* -A l1+(€-p)?
M, +M, A
=2 [ ¢(&)dE, (12)
N ~A
M, B
— =2[ Y (n)dn, (13)
N -B
M M A 2
CE=N(-2— _2—2).af80 (1- )dé. (1%)
N N -A 14 &2

From these equations we can obtain the energy of the ground state. It is
reached at M;/N = 1/3 and M,/N = 3, and equals -N(1n3 +(w/3v3) - 1).

The author is grateful to V.L. Pokrovskii for a useful discusslon.
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We shall assume that at the present time the universe as a whole has a non-
zero baryon number, i.e., baryon asymmetry exists, but the universe is neutral
with respect to all other numbers and charges during the entire time of its
existence. As to the baryon number, in the proposed model the universe is
initially symmetrical with respect to it, and becomes asymmetrical only later.
This is attalned by introducing an interaction that does not conserve the bar-
yon number and contains a CP-noninvariant admixture (ef. [11). As will be
shown here, the model explains in a natural manner the very occurrence of the
baryon asymmetry and its magnitude.

Let us construct an interaction that does not conserve the baryon number. -
We write the interaction Hamiltonian in the form:

H=(G/VIIFLS,
JE o JE —iaTH - ialbt s pBH, (1)
R LA S LW N 1

Here G is the weak-interaction constant; J&

is the standard charged weak cur-
rent; Lu, J“, and sH are the lepton and strangeness-—-conserving and nonconserv-
ing currents, respectively; the current s¥ satisfies the rule AS = AQ. The
current T is the strangeness-nonconserving hadron current and satisfies the

rule AS = - AQ [2]. The current Tu is defined in such a way that the corre-
sponding terms in the Hamiltonian are CP-odd, and the value of the coefficient
o v 10~ ensures the experimentally observed magnitude of the effects of CP-non-

conservation in K%-meson decay. The additional current qu introduced by us is
a small CP-noninvariant admixture to the standard weak current. Finally, the

current BY does not conserve the Baryon number. Let EY have the following
structure:

B“:(;C‘“p) +(EC“§—) + v 0s . (2)

_We have introduced here a new neutral fermion k of the Majorana type, i.e.,
K = Kk, so that it is possible to construct states satisfying the CP equation

k> = +|k>. Thus, the current B satisfies the rule |AB| = 1, where B is the
baryon number.

Thus, the Hamiltonian contains the following terms:
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