m is the electron mass, MN is the nucleon mass, E and w are the energies of the

in%tial antineutrinos and final electrons, and ¢ is double the initial-electron
spin projection on the direction of the incident antineutrino beam.

Thus, measurements of the number of recoll electrons at ¢ = 1, 0, and -1

will make it possible to choose unambiguously the model of the ve scattering.

In conclusion, the author is grateful to D.A. Vokov for  help and a dis-
cussion of the work.
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The influence of fluctuation pairs on the conductivity of a superconductor
above the critical temperature in weak fields wasg first investigated by Asla-
mazov and Larkin [1]. The nonlinear dependence of the conductivity on the
field was investigated by Schmidt [2] and by Gor'kov [3]. The influence of
fluctuations on the conductivity in thin films was flrst observed by Glover [4].

We have investigated the influence of fluctuations on the tunnel current
in MIM and SIM junctions. In first order in the fluctuations, the diagram
contributing to the tunnel current is shown in the figure (cf. [3]). The solid
lines are the Green's functions, the dashed lines represent averaging over the
impurities, and the wavy line i1s the Cooper vertex. The tunnel current is
given by the formula (see [5])

1 o, €=V €
IR, == — f(th—— -:th—-)lm GR(e)imGR (e-V), (1)
202 oo 27 2T

where V is the potential difference on the Parrier, Re 1s the resistance of

the junction in the nermal state, GE(E) = deGR(ep) is the Green's function
integrated over the energy & = vo(|p| - po). Since the current (1) 1s ex-
pressed in terms of retarded Green's functions, we must continue the diagram
analytically (see the figure) to real frequencies. The analytic continuation
is by the method developed by Keldysh [6]. Without presenting the cumbersome
calculations connected with the analytic continuation (they will be presented
in a detalled article), we write down the final result for a retarded Green's
function
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GR(e)= [dECR(ep) m=ins

4 L kA ) - KR(0 Q)1 (e=w/2 + i /1, )2 (2)
(2n)4

The second term in this formula corresponds to the diagram in the figure. The
frequency of the Cooper pair is assumed to be small. TS is the time between col-

lisions with electron spin flip. We note here that if 1/1:s >> T - Tc’ then the

fluctuations have no noticeable influence on the tunnel current. We therefore
confine ourselves to a discussion of samples with ordinary impurities. In this
case the Cooper vertex function takes the form

20°[ i 2w T-T 2P -1 3
kR(w q) = . - s . q?| , (3)
mp, 18T T 8T

where P = v31/3, and T is the time between collisions, which coincides with the
transport time if the electron-impurity interaction potential has the form of a
delta function.

Finally, we get

4ZaT? 1 ' [(2+THV2,173/2 ()
ImGR(¢) mm o —— — |TV2 . —
mp, p3/2 €? 2‘/2 (¢2+r~2)l/2
where T = 4/%w(T - Tc).
ﬁ?:Q\ Substituting (4) in (1), we can calculate the cur-

rent in an MIM junction. Without presenting the cumber-
some formula resulting from such a substitution, we pro-
ceed to consider the particular case when the tempera-
tures of the Junction of both metals are equal. The de-
pendence of the tunnel current on the applied voltage is
a complicated one. It is relatively easy to calculate

NS (4J/AV) = oy = 1/R. The calculation yields
1 T T 2 (5)
R {1/R,)|1 +02 — ( ____..)
(‘F')J e \T-T, °

We see from the resultant expression that the second, fluctuating term in
the right-hand side of (5) becomes comparable, in the case of extregely con-
taminated metals, Eptl A 1, with the first term when (T - TC)/T’blo' . We note

that we are considering a case when there 1is bulky metal on both sides of the
Junction.

The resistance of the contact between metals with different junction tem-

peratures Tc < Tc , takes the following form at temperatures T > Tcz'
1 2

1/2 (6)
1/R =(1/F )1+ 0,0~ : (_'r_j/z( ! )
ORI KN = :

2
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Let us_consider the tunnel current in an SIM junction at temperatures
T > Tc ('I‘c is the critical temperature of the metal M in this junctiocn). Using

the expression for the density of state of the electrons in the superconductor
(ef., e.g., [5]1), we can write the tunnel current in the form

1 = =V € lel 0(le| -A)
iRo=—__f6h———-ﬂh—>—————*——- x
2w\ 27 97/ (E&-AN1/2
. 4212 1 [((e-V)2+TH V2,132 (
x {1+ /2. &
mp, P2 (e=V)? 2V2((e-V)24+T?) /2

This integral can be calculated only in particular cases, making a de-
tailed comparison of (7) with experiment [7] difficult. It is readily seen,
however, that for an applied potential V < A the fluctuation correction to the
current 1s negligibly small. A fluctuation current begins to appear when V
becomes equal to A (A -V v T =~ Tc); this 1s in qualitative agreement with

experiment [7]. The fluctuation correction to the tunnel current at V.= A is
proportional to T/(T - TC).

In conclusion, it is my pleasant duty to thank Yu.N. Ovchinnikov, D.E.
Khmel'nitskii, and G.M. Eliashberg for a discussion of the results.
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CONTRIBUTION TO THE NONLINEAR THEORY OF EXCITATION OF A MONOCHROMATIC PLASMA
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It is well known that when a monochrcmatic wave interacts with a plasma
the capture of the resonant plasma particles in the potential well produced by
the wave leads to oscillations of the wave amplitude with a characteristic time
on the order of the period of the particle oscillations in the well, To =
k=1(edo/m)=! (k - wave number, ¢, - amplitude of potential in the wave). The
oscillations are attenuated as a result of the phase "mixing" of the captured
particles, due to the dependence of the period of their oscillations 1in the
well on the energy. These features of the interaction of the monochromatic
wave with a plasma were explained by Mazitov [1] and O'Neil [2], who investi-
gated the absorption of a wave with a sufflciently small decrement Y1, To << 1.

Tn this case it was possible to obtain an approximate analytic solution of the
problem by considering the motion of resonant particles in a field of given
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