front duration, and T the spontaneous lifetime of the upper level. For the
realistically attainable quantities T = 10%°% em~2sec™?!, t = 10~° sec, and

o = 107'® em?® inversion is possible if T 2 10-° sec, which is attainable for
the metastable atoms under consideration.
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Acoustic Rayleigh surface waves 1n solids are superpositions of trans-
verse and longitudinal volume acoustic oscillations. Usually these oscilla-
tions are localized in a thin layer near the sample surface (cf., e.g., [1]).
In pure metals at low temperatures, however, the picture of penetration of the
acoustic field in a metal in an external magnetic field may differ greatly
from the situation of the normal skin effect. We investigate theoretically
in this paper the possibility of existence of sharp bursts of field at dis-~
tances much larger than the depth of penetration of the sound in the absence of
a magnetic field.

1. We choose for the metal a model that is acoustically isotropic. A con-
stant and homogeneous magnetic field is parallel to its surface, the Oz axis
is parallel to the vector H, and the 0x axis to the inward normal to the sepa-
ration boundary. The equations of elasticity theory are

- 1
u=s3Au+(sé-sf)VdivH+——f- (1)
p

where 3(%, t) is the displacement vector, p the metal density, s, and 5t the

velocities of the longitudinal and transverse sound, and f the electron force.
According to [2], the force f is expressed in terms of the electron distribu-~
tion function F and the deformation-potential tensor AaB as follows:

2d3p

f o= -
(2at)3

é
a fdrpAaRF(p,r,r); drp
5Xﬁ

We have confined ourselves here to a direct deformation interaction between
the electrons and the sound, and have neglected the resultant electric fleld,
with the intention of dealing subsequently with the case of strong spatial dis-~

persion, when KQD >> 1 (D is the diameter of the electron trajectory, Kzl =

(k2 - wz/s;’)‘l/2 is the depth of penetration of the Rayleigh wave into the
metal, @ 1s the sound frequency, and ﬁ is the planar wave vector with compo-
nents ky and kz).

The interaction of the sound waves with the conduction electrons leads
to a renormalization of the three-dimensional elastic moduli. It is particu-
larly easy to calculate in the Froehlich model, when the tensor Aae is
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isotropic. This model does not take into account the influence of the elec-
trons on the propagation of the transverse sound and leads to a change of the
velocity of the longitudinal mode. Claiming only a qualitative description of
the effect, we neglect the contribution made to the volume renormalization of
the moduli by the electrons colliding with the surface, and use the electron
distribution function for an unbounded metal. Then the renormalized longi-
tudinal velocity can be written in the form

sé =sf(1—A).
bt 2
P [1- p) JZ(—\/H kZE) ] (2)
2 n= =so w=-n+iv

c = (A/EF)2 is the dimensionless parameter of electron-phonon interaction, v =
1/t the collision frequency, £ the cyclotron frequency, and Jn(z) a Bessel

function. Formula (2) was obtained for the mode% of a metal whose Ferml sur-
face 1s a circular cylinder with its axis along The electron force can
now be eliminated from (1) by assuming the sound velocity to be renormalized.

2. To solve the boundary-value problem the system (1) must be supplemented
by the conditions on the free surface x = 0

.2 2
=y = + Sc -25,
Pt tluy tu,) i

s

=0,

Here Ugg = (1/2)(3u /Bx + BuB/Bx ) is the deformatlion tensor. A solution in

the form u(r, t) = u(x) exp[l(k 7 - wt)] for the planar components of the longi-
tudinal acoustic mode, satisfying the system (1) with the boundary conditions,
is

o0 dycos (kpx y)
Ufx) = u, (0)— . (3)

Ba
” o

1 ——
y2+1+§ (-'nJ:(?fo\/yz+p2)

n"=- o
Here uu(O) are the amplitudes of the unperturbed solution, p = ky/Kﬂ, and

2
[ .
"‘t’t’z w~nfl+iv

3. Under the conditions of acoustic cyclotron resonance, w v nl >> v,
when Gn vowt >> 1, and under conditions of strong spatial dispersion, KRD >> 1,

the field distribution of the metal has the following form in the case of
longitudinal polarizaticn of the sound wave (ky = 0)

- 172
y2 2y
y(x) = v, (0) v 3 ylcosty, -——)exp S (1)
ci/2
12 g e, r D\ G,

(_l)n+l

where m, = [1 + (—l)n]/2 and Vo = m/2 + 2mm are the zeroes of the asymp-

totic form of the Bessel function. The important terms in the sum over m are
those with m v wt(D/x)?. At sufficiently large wt we can replace the sum for
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the first few bursts with an integral with respect to m. Then the amplitude
of the bursts at the maximum is given by

G, cos 214- (5)
v (rD) = v (0)8y2

KeD f3

We see therefore that the height of each burst decreases like r~— %, and the
signs of neighboring maxima alternate. The field at the maximum of the r-th
burst is wt/r? times larger than the field between them, and attenuates little
in the interior of the metal at distances larger than K—i.

It is easy to conclude from (4) that the field bursts at a depth equal to
an integer number of electron-trajectory diameters have the form of a packet
made up of the waves cos(ymx/D). These waves are acoustic osceillations that

attenuate weakly in the interior of the metal. This is confirmed by the pre-
sence of poles of the integrand of (3) near the zeroces (y = ym/KlD) of the

matrix elements of the electron-phonon interaction. This phenomenon is analo-
gous, in essence, to the anomalous penetration of an electromagnetic field into
a metal [3,

If ky # 0, then the field bursts are formed by a set of non-equidistant
series coS{(x/D)[y - (k D)2/2y 1}. Such a wave packet spreads out already for

the first bursts. The crlterlon for the stability of the r-~th burst follows
from the requirement that the phase shift (x/D)(k D)2/2y be small compared
with ™ for each harmonic:

wr
(kyD)z <« =

4

The appearance of dispersion with ky # 0 is connected with the nonlinearity of
the dispersion of weakly-damped electron waves.
L. In the case of low acoustic frequencies, |v - iw| << @, it is neces-

sary to retain in the sum over n only the term with n = 0. Assuming KQD >> 1,
this leads to the result

_ kp|x=D|+2
U'(X, = U’(O) [. Kf(]_%%)' e-xdx-D]Goe_";___D__ + "OJ ’ ky = 0' (6)
K K‘

The amplitude of the r-th burst is (Go/KzD)r v (KZD)'r, and the field attenu-

ates rapidly in the interior of the metal. The formation of small bursts is in
this case a size effect. When k_ # 0 sets in, the amplitude of the field

bursts decreases exponentially like exp[—KgDu2/2].
The effect predicted above can be observed experimentally under condltlons

of acoustlc eyclotron resonance with surface hypersonic waves (w v 101% - 10t
sec™!) in pure single crystals of metals at low temperatures.

The authors thank E.A. Kaner for a stimulating criticism and valuable dis-
cussions.
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The sharp increase of the magnetic susceptibility of an electron gas in
the peaks of quantum oscillations leads to the possible occurrence of magneti-
zation jumps as functions of the magnetic fleld [1] and of phase transitions
into states with "dlamagnetic" domalns [2] and periodic distributions of the
magnetization [3]. We wish to call attention in this article to peculiarities
exhibited by these phenomena in an electron liquid and caused by the presence
of an exchange Fermi-liquid interaction. These peculiarities reduce essential-
ly to the existence of spin ordering of the electrons under certain conditions.
To_study the effects of interest to us, 1t is necessary to consider the tensor
(k) describing the reaction of the electrons to a small inhomogeneous addition
to the magnetic induction (we denote the Fourier component of this addition by

B ) This ftensor is defined by the equation m = xb , Where My is the Fourier

component of the addition to the electron magnetlzatlon We confine ourselves
henceforth to a situation in which the field 1nhomogene1ty ex1sts only in a
lane perpendicular to the gquantizing magnetic field H = (0, 0, H), and direct
k along the .y axls. Then, in the isotopic case, only the dlagonal elements of
the tensor X are different from zero. Only one of these components, X » de-
scribes the reaction in the case when b il ﬁ, and the other, X, in the case

bk.L H. For an isotropic electron fluld with a contact exchange Fermi-liquid

interaction described by a constant ¥, we can easlily obtain, by using the gene-
ral results of [4], the values of XH and X, in the following form:
5

2 2
WX+ 2p Py P (uy Xyt P)
X, =X o0 L . y':’_‘/,_._o_.._.__ , (1)
1+!/1X“ ]+¢x"
2 2
Ho X (o X)
Y =K + °o°1 = y° =y o L (2)
L L y xl 1 x '
1+¢' 1 +|/’ ).
w? 1 dne? [ Vaa = k) Vs (k)
(“ll) ° ( )+ < Po~Pa’f Vua a’a (3)
. $acT Ny 0T G m t \VE e k) VE (k)
pa— a; aa-oaa
Xy ==3 L ey SR e, (%)
aa’ €, ~ €, ck aa’ € €t

X =_ 3 PG'_Pa+°a+“a’

’
aa €,
a’ ¢ +h Q,

I.Ict'a(k)[2 . (5)
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