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Subband mobilities and Dingle temperatures within a two-subband
model in the presence of localized states
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We calculate the transport time and the single-particle relaxation times in a two subband system of a two-
dimensional electron gas. We take into account screening and density of states effects under the assumption
that disorder leads to localized states in both subbands. We find that the single-particle relaxation time of the
second subband is always larger than for the first subband.The transport time of the second subband can be
smaller or larger than the transport time of the first subband.

PACS: 73.50.—h, 73.61.Cw

Occupation of the second subband in a two dimen-
sional electron gas (2DEG) has to lead to a change of
the electron conductivity. This effect was under study
for quite a long time. The main attention was paid to
investigate the influence of the intersubband scattering
processes on the transport in 2DEG [1-5]. Recently a
new two subband systems were developed [6, 7] in which
intersubband scattering is expected to be negligible [8]
and very other effects, in the first line the change of the
screening, define transport and quantum properties in
small normal magnetic fields. In this particular case the
two-subband system is very similar to the single subband
one in the presence of a parallel magnetic field.

Some time ago we calculated the magnetoconductiv-
ity of a two-dimensional electron gas in a parallel mag-
netic field at zero temperature [9]. With a magnetic field
one polarize the electron gas. When the Zeeman en-
ergy is smaller than the initial Fermi energy the 2DEG
is partially spin-polarized. The system consist of two
independent spin subbands if spin-flip processes are ab-
sent. The two spin-bands correspond to two electron
gases with different Fermi energies. The two electron
gases contribute to the screening while the density of
states is modified. For zero magnetic field one has a
spin-degeneracy of g, = 2 and above a critical field one
has a totally polarized system, which correspond to a
single subband system with g, = 1. We found a huge
increase of the resistance between a unpolarized to a
fully polarized system [9]. It was observed that the
theory is in reasonable agreement with experimental re-
sults [9, 10].

In the present paper we apply an analogues approach
to a very conventional two-subband 2DEG in which the
intersubband scattering is negligible. We discuss the be-

havior of the single-particle relaxation time (defining the
Dingle temperature) [5] and the transport scattering
time as a function of the electron density. As an applica-
tion of our calculations we consider Si(111)-MOSFET’s
[6, 7].

Transport time calculations for a low density elec-
tron system should include the transition of the electron
system to strong localization (metal-insulator transition,
MIT). The effects of a MIT on the magnetoresistivity
in the two spin-band model has already been discussed
[11]. In the region of localized states the conductivity
should vanish when the temperature goes to zero. In
the region of delocalized states the conductivity should
be finite even at zero temperature. This argument only
holds for the first subband. It is not clear what one
would expect for the behavior of electrons in the second
subband. We suppose that there exists a mobility edge
in every subband. With this assumption we calculate
the transport times [5, 12] of a two subband system as
function of the electron density.

An important point in our approach is the absence of
intersubband transitions. If different subbands are oc-
cupied by electrons of different valleys with a distance
between energy minima in the k-space equal to ko the
ratio between intersubband and intrasubband scattering
time is about (kr/ko)3. For typical electron density in
Si-MOSETsS this estimate gives < 1073,

Our model consists of a 2DEG with two subbands.
For a total electron density N < Ny only the first sub-
band with ggl) is occupied. For N > Ny two bands are
occupied: the first subband with electron density N1
and the second subband with 91(,2) and electron density
N®)_ For N > N the density of electrons in the first
subband is given by N(1) = (g,(,l)N + 291(,1)N0)/(g1(,1) +
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+ gz(,z)) and in the second subband by N(?) = (gz(;Z)N -
- 2g,(,1)N0) / (gf,l) + g,(,Q)). The two Fermi wave numbers
are related by the relation (47 N()/ 9sgs)1/2 = kg) >
> k) = (4nN@ /g,g,")) /2.

All electrons contribute to the screening. In the low-
est order of the disorder the expression of the trans-
port time for subband (I) is a g-integral (0 < ¢ < 2kg))
over the random potential < |U(g)|? > and the screening
function £(g) with some weight factor. eg) is the Fermi
energy sg) = hz(kg))2 /2m* of band (I) with Fermi wave
number kg). Accordingly, the transport time Tt(,lg of elec-
trons in band (I) is given by [12]

Ao 1 <U@P> ¢
@~ 50 T )? (02 ’
Tt,0 mER 70 €\ (4(kp’) —g*)'/?

1)

with the screening function e(q)=1+F:(q)qs(q)/q, the ¢-
dependent screening number

45(a)/as = 95" (1 - ReW) ¥

and g, = gs/ay,where a} is the effective Bohr ra-
dius; F.(q) is the form factor for the Coulomb inter-
action due to the finite extension of the electron gas
[5]. We use charged impurity scattering < |U(q)|*> >=
= N;(2ne’F;(q)/eLq)? with impurities at the interface
with the density N; and a form factor F;(q) for the finite
extension of the electron gas [5]. The two bands give rise
to a mobility /.L((]l) = eTt(,lg /m*. For transport character-
istics calculated in the lowest order of the disorder we
use the index (0).

In addition we introduce a metal-insulator transition
in the mobility of both bands via [13]

pONO > NPy = p{ 1 - N /NW) and
pO(NO < Ny =o. 2)

with a mobility edge at Nc(l) in the two bands. For
NO > N one has p® = p{. Both bands con-
tribute to the conductivity o = NWeu®) + N ey
from which one can define an effective transport time
=m*o/Ne? = I NO/N + 7B N /N,

The single-particle relaxation time Téf()] of the two
bands describes the Shubnikov-de Haas oscillations and

the Dingles temperatures of the two bands kBTL(,l) =

= h/ 27”'5(?)- The single-particle relaxation time is ex-
pressed by an expression similar to the one given in
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equation (1), but ¢2 in the numerator must be replaced
by 2k% [12]. All scattering processes contribute to
the single-particle relaxation time while backscattering
processes prevail in the transport scattering time. The
single-particle relaxation time is connected to density of
states modifications and is not sensitive to a MIT. The
density of states is finite at the electron density where
the MIT occurs [12]. Therefore no critical density and
no MIT is introduced for the calculation of the single-
particle relaxation time.

Using Eq.(1), (2) below we calculate numerically the
transport time and single-particle relaxation time. Hav-
ing in mind the application to the 2DEG in Si-(111)
MOSFET we use a two subband model [7] with g£1)= ,
¢$9=4, and Ny = 1.8-10' cm~2. The impurity density
N; =4-10" cm 2 and N") = N = 0.6 - 10! cm 2
have been chosen to achieve agreement with experimen-
tal data of Ref.[6] obtained for silicon(111).

Results of our calculations are shown in Fig.l.
Accordingly, there is a MIT in the first subband at a

3
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Fig.1l. Transport times Tt(l) and single particle relaxation
time ‘rs(’l()) of the two subbands ! = 1,2 versus total electron
density as dashed and dash-dotted lines, respectively. The
solid line is the effective transport time of the two bands.
For the transport time two mobility edges have been as-
sumed at NV = N = 0.6 - 10" em™2. The impurity
density is N; = 4 - 10 cm—2

total electron density Ny = NY = 0.6-10" em 2 and
for density NV < N; we have i = Tt(l) = 0. A MIT for
the second subband occurs at a total electron density
Ny =2.7-10'" cn~2 where Tt(2) = 0. There are localizes
states in the second subband for Ny < N < N5 and this
leads to a effective transport time which is lower than the
transport time of the first subband: 7, = Tt(l)N /N <
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< Tt(l), see Fig.1l. Due to increasing screening in the

first subband, when the second subband becomes occu-

pied for N > N, Tt(l) and Ts(’lo) increases with increasing

density. We mention that within an one-subbad model
Tt(})) and TSO) are only weakly dependent on the electron

density. One can see explicitly that 7'30) is nearly con-
stant, the weak increase at small density N ~ Nj is
due to weak confinement at low density. We note that
7-5,20) > TSO) due to better screening effects in the second
subband.

In Fig.2 we show the ratio Tt(2) / Tt(l) and Tfo) / 7'5’10) ver-
sus total electron density N. Near N, there is a small
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Fig.2. Ratio ‘rtm /'rt(l) and Ts(,20) /Ts(’lo) versus total electron
density N with N; = 4-10'" cm™2. Two mobility edges
have been assumed at NV = N{® = 0.6 - 10" cm™2.
The ratio T;’zo) / 7'3(’10) begins at a total electron density No =
= 1.8 10" cm™2. The ratio Tt(z)/Tt(l) begins at a total
electron density N> = 2.7 -10'! cm ™2

density range 2.7-101ecm™2 < N < 310! cm~2 where
Tt(2) /Tt(l) < 1 while at higher density Tt(z)/Tt(l) > 1. For
the single particle relaxation time we find Tfo) / 7'5,10) >1
for all densities. With the occupation of the second sub-

band we note a strong decrease of Tfo) / TSO) for N > Ny
due to the strong density dependence of T§,10). The in-

crease of Tt(z) /Tt(l) with increasing density near N, has
his origin in the existence of a mobility edge at Na.
Without localized states the ratio Tt(’%)/ Tt(})) would be
very similar to the ratio Tfo) / 7'5(’10).

Neglecting intersubband scattering is justified for sil-
icon (111) [8], but might be questionable for other sys-
tems, for instance GaAs/Al,Ga;_,As heterostructures
[5]. However, intersubband scattering begins at densi-

ties where a new subband becomes occupied, but there
we assume localized states. Moreover, when discussed
in terms of ratios, intersubband scattering might not be
so important. Therefore, we apply now our results in a
quantitative way to heterostructures, where, in addition,
the disorder is of long-range order and theory predicts
for high density 7. /{9 > 1[12, 14].

SdH oscillations are characterized by the carrier mass
and the Dingle temperature, which is proportional to
the disorder present in the sample. In experiment on
GaAs/Al,Ga; ,As heterostructures with double sub-
band occupancy a double periodicity in Shubnikov-de
Haas oscillations with two different Dingle temperatures
was observed, see Fig.1 in Ref. [1]. From this Fig.1 it fol-
lows that the single-particle relaxation time of the first
subband is smaller than the single particle relaxation
time of the second subband.

A similar two-subband system in GaAs/Al,Ga;_,As
heterostructures was studied in another experiment: it
was found perplexing [3] that one can find in the same
sample Tt(z) > Tt(l) and Tt((z)) < Tt(l)

1
0

density, whereas TSO) > 7,0 always holds. We explain

the fact that Tt(2) < Tt(l) by the existence of a mobility
edge in the second subband, see Fig.2. It is generally be-
lieved [3] due to theoretical results [12, 14] that the scat-
tering time is larger than the single-particle relaxation
time. But this theoretical believe concerns systems with-
out localized states: Tt(’lg > TS()). With localized states

, depending on the

and near the mobility edge one finds Tt(l) < T,Sf()]. There-
fore, we claim that we have resolved a 20 year old puzzle
[3] within our two-subband model by taking into account
localized states in the second subband.

With very strong disorder one should be able to lo-
calize all the states in the lowest subband with N =
= N; < Ng and Nc(l) ~ Np. Due to the stronger screen-
ing in the presence of the second subband stronger dis-
order should have a very weak effect on N,,gl). Therefore
we predict that Nc(l) < Np.

In this paper we have shown that a two-suband model
with localized states give new insight into transport scat-
tering times and Dingle temperatures in two-subband
systems. Our predictions made with our model should
be tested. For instance, we suggest that near Ny one
should find 7z < Tt(l) . We claim that the strong density
dependence of Tt(l) and 7'5(110) is a strong indication for the
presence of a second subband.

1. H. van Houten, J. G. Williamson, M. E.I. Broekaart et
al., Phys. Rev. B 37, 2756 (1988).

2. T.P. Smith ITI, F. F. Fang, U. Meirav, and M. Heiblum,
Phys. Rev. B 38, 12744 (1988).

Mucema B #AT® Tom 86 BHIM.3-4 2007



Subband mobilities and Dingle temperatures within . .. 289

8

. J.P. Smith IIT and F. Fang, Phys. Rev. B 37, 4303
(1988).

. S.S. Murzin, S.I. Dorozhkin, G. Landwehr, and A.C.
Gossard, JETP Lett. 67, 113 (1998).

. T. Ando, A.B. Fowler, and F. Stern, Rev. Mod. Phys.
54, 437 (1982).

. K. Eng, R.N. Mc Farland, and B. E. Kane, App. Phys.
Lett. 87, 052106 (2005).

. K. Eng, R.N. Mc Farland, and B. E. Kane, Phys. Rev.
Lett. 99, 016801 (2007).

. F. Stern, Surf. Sci. 73, 197 (1978).

IIucema B RATP® Tom 86 BEIM.3-4 2007

9. V.T. Dolgopolov and A. Gold, JETP Lett. 71, 27
(2000); A. Gold and V.T. Dolgopolov, Physica E 17,
280 (2003).

10. E. Abrahams, S.V. Kravchenko, and M.P. Sarachik,
Rev. Mod. Phys. 73, 251 (2001).

11. A. Gold, JETP Lett. 72, 401 (2000).

12. A. Gold, Phys. Rev. B 38, 10798 (1988).

13. A. Gold, Phys. Rev. B 44, 8818 (1991).

14. S. Das Sarma and F. Stern, Phys. Rev. B 32, 8442
(1985).



