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It will be shown in this paper that an external magnetic, field can exert
an anomalously strong influence on the dielectric constant e(k, w) of the con-
duction electrons in an antiferromagnetic semimetal or in a strongly doped
semiconductor. It is assumed that the magnetic properties of the crystal are
governed mainly by the localized moments of the magnetic atoms, and not by the
conduction electrons (s-d model). Owing to the exchange interaction with the
localized moments, the state of the conduction electrons-depends strongly on
the character and degree of magnhetic ordering of the crystal, which can be
varied with an external magnetic field.

In many magnetic conductors the width W of the conduction band greatly
exceeds the product of the s-d exchange integral A by the spin S of the mag-
netic atom. According to [1], in the first-order approximation in AS/W, the
appearance of an average moment S in the crystal causes a shift of the con-
duction electron with spin projection 0 by an amount A30. The average moment
S of the antiferromagnet in the field is determined from the condition that the
total energy of the system be a minimum. At sufficiently low electron densi-

ties n, this energy consists of the exchange energy NkTNcos 26 of the localilized

moments and the energy ~uH cosb® of these moments in the fleld. Here TN is the

Neel temperature, u the Bohr magneton, and 26 the angle between the moments of
the antiferromagnet sublattices (the field is perpendicular toc the antiferro-

magnetism vector, so that S = S cos 8).

It follows from the foregoing that S ~ UHS/kTN, so that the spin splitting
of the electronic levels turns out to be here N(AS/RTN)uH, which is larger by

gseveral orders of magnitude than the usual Zeeman splitting uH. Indeed, ac-
cording to [2], the energy AS of all magnetic materials without exception is of
the order of the atomic energy, i.e., 1t amounts at least to several tenths of
an electron volt, and in many cases also to several electron volts. At the
same time kTN is a quantity of second order of smallness relative to the over-

lap of the d-functions of the neighboring magnetic ions, and 1ts typilcal value
is therefore ~10™"% - 1072 eV [2].

At small n, if the Fermi energy of the conduction electrons is EF < AS,
the giant Zeeman effect (GZE) described above can lead to complete polarization
of the electrons with respect to spin even in moderate fields

nsiF*n  Ee
n

®

In the case of ordinary antiferromagnets, the sublattice-collapse field is

HN < 10° Oe, but in the case of metamagnets it can be only ~10% Oe {1]. Since
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in such fields the number ofelectrons with ¢ = 1/2 is double the number of elec-
trons having the same ¢ at H = 0, their kinetic energy EF(H) on the Fermi sur-

face also increases appreciably, and this affects e(ﬁ, w) strongly. The situa-
tion 1s particularly interesting in the case of energy bands with strong non-
parabelicity or with several extrema that are close to one another. 1In this
case the magnetic field can be used to decrease significantly the plasma fre-
guence wp, and accordingly, to reverse the sign of e(k, w) in a definite fre-

quency interval w ﬁwp, making the conductor transparent to electromagnetic waves
in this interval. The magnetic field also influences greatly the screening
radius in the antiferromagnet.

It is assumed that the frequency of electron-defect collisions greatly ex-
ceeds the Larmor frequency, but 1s small compared with EF/h. This makes it
possible to disregard the field-induced anisotropy of e(k, w) and the quantiza-
tion of the electron orbits.

The initial expression for s(ﬁ, w) has the standard form

4pel n ko~ ",
ekyw)=1- —p 5 2107 PO (1)
e k% p, o mp,k‘p—w-iS
Here wp+k,p = Ep+k - Ep and Ep is the electron energy and is given, assuming

pF/m >> aw and taking the non-parabolicity into account, by the expression

2

=P 2 (2)
E, I (1 + Bp%),
where m is the effective mass of the electron, npo is the Fermi distribution
function of electrons with energies Epc = Ep - AS0 at T = 0, Pp is the Fermi

momentum at H = 0, €9 is the dielectric constant of the crystal without allow-
ance for the conduction electron, and a 1s the lattice constant. Terms pro-

portional to (AS)2?/W have been disregarded in (2).

Retaining only terms linear in Bp%, we get from (1) and (2)

3 3
w, [1+ ?ﬂﬂf.-] K[t + 5 TE/m’e’ (3)
€ (krw)‘_‘ 1 - 3 ] + 3
?
where w, = (hme2n/eom)'/? 1is the Langmuir frequency, H% = (p,;.+ + p% )/p%, and
pF+ and pp are the Fermi momenta for the electrons with ¢ = 1/2 and ¢ = -1/2.
The dependence of pp  on the magnetic field, with allowance for (2), is given
by *
V1+ 8mB(EL + AS/2) 172
PF - (4)
28

Here E! is the Fermi level in the field H, reckoned from the bottom of the band

F

at H = 0. The dependence of E% on H is determined from the condition for the

conservation of the number of electrons:
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Thus, according to (3), the effective plasma frequency at k = 0, with allowance
for the GZE, depends on the external field H like

~ 3
0, (H) =wp[l+ ]_0311;] . (6)

According to (5), in the critical field H at which all the electrons are
fully polarized in spin, we have pF = 1/3 . Taking this into account, it

follows from (6) that the maximum shlft of the plasma frequency in the field,
at BpF << 1, amounts to 0.6(22/3 - l)BpF It follows from the general proper—

ties of the electron spectrum that 8 < 0. Thus, the plasma frequency decreases
with increasing field. If we choose for an estimate the value BpF = 0.3 at

n = 102%m™ %, then this shift is approximately egual to 10%. Such an estimate
of the possible amplitude of the effect can hardly be regarded as too high,
since there are known semiconductors in which the degree of non-parabolicity
is larger by several orders of magnitude (for example, InSb [3]).

If in addition to the principal minimum of the band there is another mini-
mum close in energy to the principal one, then the magnetic field can be used
to cause the electrons to go from the principal minimum to the auxiliary one.
This also affects the value of Gp. The decrease of &p in the magnetic field,

in accord with formula (3), causes an increase of €(0, w). In particular, in

a definite interval of the frequencies w, the magnetic field can change the
sign of €(0, w) from negative to positive. By the same token, if the conductor
is opaque to a field of frequency %&p(o) at I = 0, then it becomes transparent

in the field. 1In other words, it is possible to control the transmission of
electromagnetic waves through a conductor by means of a magnetic field.

The magnetic field alters also the dlsper51on 1aw for plasmons. In the
case of strong non-parabolicity, when BpF >> (E /w )2, we find from (3) that

the GZE leads to a relatively strong shift of the Langmuir frequency &p and

to a weak decrease of the glasmon effective mass. In the case of weak non-
parabolicity, when (EF/wp) >> Bp%, there is no shift of the Langmulir fre-

quency as a result of the GZE, but the effective mass of the plasmon in the
field H, decreases by a factor 22/3 compared with the mass of H = 0.

As follows from (3), even when B = 0 the screening radius turns out to be
significantly dependent on the magnetic field. Its value at Hc exceeds that

at H = 0 by 21/% times. This can lead to a number of interesting physical ef-
fects. In particular, the increase of the screening radius in a strongly
doped semiconductor can cause it to change from the conducting to the insulat-
ing state. To this end it is necessary that the carrier density in it not
exceed greatly the critical value at which collectivization of the defects with
formation of an impurity band occurs in the absence of the field. Turning on
the field leads to an increase of the radius of the defect potential and can
thus stabilize the state in which each electron remains on its own atom, and
there is no impurity band. Of course, owing to the random distribution of the
impurity, one can hardly expect the field-induced transition into the insulat-
ing state to be abrupt.
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It was shown in [1] that when a homogeneous unbounded electron beam moves
through a medium at a velocity exceeding the wave-propagation velocity in this
medium, instability develops in the beam.

We shall show below that an exponential growth of the perturbations in the
beam is produced also when the conditions for Cerenkov radiation are not satis-
fied, but the medium is inhomogeneous or the beam particles move with accelera-
tion.

N 1. We consider a homogeneous unbounded beam passing with constant velocity
(vo || z) through an inhomogeneous dielectric (e = e(z)). Let us trace the
development of a small perturbation in such a beam. The linearized equations
describing the interaction of the perturbing field with the electron beam take
the form

JE 4
rotE:-—-l--a—H; rotH=_¢_(_l)_. +_L(p°V+V°p),
c dt c dt c
__‘214.‘,031:.:.5 +-1—[v°iH]. (1)
ot dz m mc

_P + div(pov + Vop) = 0.
at

The subscripts 0 denote here the unperturbed guantities. We choose the depen-
dence on the time and on the transverse variable in the form expl-iwt + ik, x].
We then have for the field of an E-wave (E_, E_, H_) the following system of

. N . . X Z y
integro~differential equations: -

.o w? .owl L2
E. v (e - 2)E, =ik |E - e [E e dz],
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wi kf_ v: z z,
Ez(kzc - kf) + k2 —<1 + — — )t fdz, [ E:e'dzl
L]

V2 kz [ -4 [}
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wZ z
= ikl[E; - b et fExe’dzl] . (2)
) (4 °
where s i 4
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