per unit mass, we obtain from (3)

1=4(i)_7(ﬂ=) oL, L), (1)

Vi 2 "4y

where

17yl (1 =y2) V(1 - xP) Ve

e +

[
° v 1 =200% (1 - )21 - y2r)/2

®(x, y) =

LA =D - )Y - xP) de

T ekt I

1yl y2(1=20) + 1602(1 - ) (y2r = 1)

Cq is the velocity of the longitudinal sound in the solid, and ¢ is the Riemann

function. A plot of &(x, y) obtained by numerical calculation is shown in Fig.
2.

In the derivation of the foregoing formula we used for the equilibrium dis-
tribution function ne its classical value T/e, since most liquids solidify upon
cooling long before quantum effects come into play. We note also that in order
for (4) to be valid it is necessary that there be no dispersion of sound in the
liquid up to frequencies corresponding to a mean free path equal to a. In other
words, the thickness a must be larger than pcd®/yw3, where wy is the frequency
above which appreciable dispersion sets in.

For the water-polystyrene (or Plexiglas) pair we obtailn from (4) that vyo/v,
is approximately equal to 10~7/va (a is in cm) at T = 353°K and 107%/Va at T =
293°K; for the mercury-silver pair we obtain approximately 10-%/va at T = 293°K.

The ratio of the total liquid fluxes through regions II and I differs from
v2/Vi, as can be readily seen, by the factor 3%/4a. On the other hand, if the
liquid in region II is at rest, then a pressure gradient 1s produced in this
reglon, and its ratio to the pressure gradient in region I is equal to

(3a2/48%)(va/vy).
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1. In connection with the progress in the development of high-power lasers
(e.g., lasers using molecular gases such as CO,, CO, etc.) the problem of opti-
cal breakdown of molecular gases has become quite vital. The solution of this
problem has a direct bearing on the determination of the limiting parameters of
lasers for the infrared band.
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The breakdown of atomic gases in the giant-pulse regime has been thoroughly
investigated (see the review [1]). At sufficiently high pressures (p > 1 atm)
the optical-breakdown mechanism 1s the cascade lonization process. Within the
framework of the simple classical model, the process evolves in the following
manner: The priming electrons acquire energy from the wave field via elastic
collisions with the neutral atoms; the rate of electron energy acquisition is
de/dt = o = €0V pps Where €o = e?E3/2mw? is the energy of the electron oscilla-

tions in the field Eg¢ of frequency w, and v is the frequency of the elastic

eff
collisions. Moving in energy space, the electron attains an energy € = I, where
I is the characteristic value of the threshold energy of the inelastic proc-
esses, within a time T = I/0, and consequently the cascade-development constant
Y 1s given by the relation y = k/T, where k is the probability of electron pass-
age through the excitation zone. With decreasing radiation frequency, y in-~
creases in proportion to w™2, leading, in the breakdown of atomic gases, to a

corresponding decrease of the threshold radiation density q.

When the radiation interacts with a molecular gas, however, this effect
can be compensated to a consliderable extent by the deceleration of the electrons
on the vibrational levels of the molecules. As will be shown below, the vibra-
tional levels of a molecule form a unique type of potential barrier, and the
motion of the electron in energy space acquires a tunneling character. This
circumstance changes qualitatively the field dependence of the cascade-develop-
ment constant, and the breakdown of the gas becomes much more sensitive to the
light flux, namely, an exponentially-attenuating factor appears in the depen-
dence of Yy on the field.

2. The kinetic equation for the electron distribution function f(e, t) =
neF(e) explyt] in the light field is

aJ dF dF ~
= _ __9 ) —_— N F’ d .—:l,
vF 3¢ *(a, )* —Jr)v [Ficde (1)

where ngy is the priming electron density,

"F) (2)

Jq :-g 0:—2(5?

the electron flux in energy space, determined by the radiation field,

0 for ¢ < I

aF
(BT) (3)

in w for ¢ > |

is the change of F(e) due to lonization and excitation of the electronic terms
of the molecule [2],

(aF) B No t l00»1(( TﬁwOm)F"i *f""om)v(( ! hmo"")— (Ll)
at ’

) —ag (VF( v}

m-

is the collision term connected with the excitation of the vibrational levels
of the molecule, Ng 1s the density of the molecules, %om is the cross section

for the excitation of the n-th vibrational level with gquantum energy ﬁwom, and
v is the electron velocity.
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It is known that only the first few (approximately four) vibrational levels
are effectively excited in molecular gases [3]. Since the typical energy of the
vibrational quantum is approximately 0.1 eV, the average energy lost by the elec-
tron upon excitation of the molecule is ~0.2 eV. At the same time, the energy
at which the vibrational structure of the molecule is excited most effectively
lies in the range 1 - 3 eV. Taking this into account, we can expand (4) in
powers of ﬁwOm' As a result (1) takes the form

yF oo St d b, d, = at () Fle) (4)

de
where a¥(eg) = Nov(e) Z Oom(e)ﬁwOm is the rate of electron energy loss upon ex-

citation of the vibrational levels. In practice, the function o¥*(e) differs
from zero only in a small viecinity A (compared with I) of the point € = 1 cor-
responding to the maximum of a¥(e). We can therefore put in the calculation
a¥(e) = a¥(1)A8(e - 1). Introducing now the effective probability k of elec-
tron penetration through the band of excitation of the electronic terms of the
molecule, we write down the boundary conditions for Eq. (4'):

J0)= J (1)1 k), FU) =0, (5)
It is physically clear that at the point € = i, under the condition o << o¥(i),

the function F(e) has a discontinuity, whereas the flux J_ is continuous at this
point. This leads to the conditions a

a*(i) A
Fl,-m-F0+°)ﬂp-”—“ -t
a
(6)
aF aF)
F - 2q— ={F - 2a — .
aal)i-o d¢ Guo

Equation (1) with the conditions (5 - 6) defines our problem completely.
In particular, the expression for the determination of the cascade-development
constant y takes the form

3 . * /—2_l
shx{l+ — . [cx A {'))—1” xIV+k), x = iy (7)

3 T a

Upon satisfaction of the condition Aw¥/ia << 1, which means low losses at
the vibrational levels, we have from (7)

y =kt (8)

which coincides with the expression obtained in [2] for the breakdown of atomic
gases. Under the condition Aa¥/ia > 1 we obtain the "tunnel" effect:

y=kiiexp _ Aa* (i) . (9)

ia

It follows from (9) that in the case of breakdown of a molecular gas the thresh-
0ld radiation flux density q¥ depends logarithmically on the pressure and on the
light-pulse duration and is determined in practice by the molecular character-
istics of the gas and by the radlatlon frequency. Indeed, in the pressure

range 1 - 10 atm and at T 2 10~% sec we obtain with the aid of (9) the follow-
ing expression for gq* (at the breakdown criterion yt = 40)
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. (10)
o a0~ /i ev)

] A <hawy, > Lo,
q* (Wem?' ) = 1.6:1071842 2 2 VT
i

We present numerical estiTgteszfor molecular nitrogené In this case, ac-
cording to [4], ZGOm @ 3 x107'° em?, o, = 1.2 X 10-1% em?, wy,> = 0.4 eV,
i 2A=22¢eV, and at T = 107% sec, w = 2 x 10'* sec™! (CO; laser), k = 0.1,
p=1atm, and V_p. = 3 X% 10'! sec™?! we obtain gq¥* = 10'° W/cm?.

We note that a corresponding estimate, without allowance for the decelera-
tion of the electrons on the vibrational levels in accord to (8), leads under
the same conditions to q < 107 W/em®. Thus, the effect under consideration
leads to high power characteristics of molecular-gas lasers.
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As is well known, the motion of dislocations in the glide plane through
the Peierls barriers occurs via production and further expansion of double kink.
At sufficiently low temperatures, such a phenomenon has the character of sub-
barrier quantum penetration (tunneling). The purpose of the present paper is
to calculate the time of tunnel formation of the double kink.

We assume the simplest model wherein the dislocation is represented by
a string in a periodic potential field Uo(y) (the Peierls relief). Assume that
the string is initially at reat at the bottom of one of the valleys (the zero-
point oscillations are assumed small). In the field of a constant external
stress F, such a position becomes unstable, and the string will move after a
finite average time to the neighboring valley. We shall henceforth consider a
potantial relief U(y) - Ug(y) - Fy only for two neighboring valleys. The
Hamiltonian of the string is .

. p,OyN B K 0 y¥
Ho= fg(5-)de + Vigh' Viyls I[—z-(-é;—)w‘»ufy)]dx. (1)

We consider motion only in the glide plane, the coordinate x is directed along
the valley, y is the transverse coordinate, p is the string density, and « is
its stiffness.

A quantum string is described by a wave function ¥{y}, which is a func-
tional of y(x). It is impossible to solve the gquantum-mechanical problem in

Ly





