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We consider here the formation of vortices in a superfluid liquid that
moves relative to the vessel walls, at T = 0. Since there 1s no normal compo-
nent, the theory of fluctuation formation of vortices [1] is not applicable.
The principal role is played in this case by the interaction between the liquid
and the vessel walls. As a result of this interaction, the state of homogeneous
motion of the liquid can go over quantum-mechanically into a state of motion
with the vortex, at the same total kinetic energy of the liquid. The inter-
action of the liquid with the wall is caused by inhomogeneities on the vessel
wall, which perburb the homogeneous motion of the 1liquid. The possibllity of
such a vortex-formation mechanism was first pointed out by Vinen [2]. A
similar quantum-mechanical transition from one macroscopic state into another
was considered in [3, 4], where nucleus formation in the phase transition by
tunneling was described. In this case, however, suprabarrier reflection takes
place instead of subbarrier tunneling.

We consider inhomogeneities having a characteristic dimension R >> a, where
a 1is the radius of the vortex core and is of the order of atomic dimension.
This makes 1t possible to use a hydrodynamic description. We assume for con-
venience an inhomogeneity in the form of a hemisphere of radius R on a flat
vessel wall, over which liquid flows with velocity u at infinity. We seek the
probability of formation of a vortex in the form of a half-ring whose ends
glide freely over the wall. When the vortex moves, the plane of the half-ring
remains continuously perpendicular to u, and the ring axis passes through the

center of the sphere.

Let r be the radius of the ring and z the coordinate of its plane, reckoned
from the center of the sphere in the direction of u. The equations of motion
of the vortex are then (cf., e.g., [5])
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where Kk is the circulation of the velocity, p the liquid density, and E the
total kinetic energy of the liquid with the vortex. In this geometry it is
easy to calculate E, since mirror reflection yields a ring and a sphere having
a common axis [6]:
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where Qi/2 18 a spherical function of the second
kind and Eo, the kinetic energy of the liquid in
the absence of the vortex.
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The E(r, z) = const curves are the vortex
motion trajectories. Vortex trajectories with

Ll

K < 0 are shown in Fig. 1. The arrows show the : y 3
vortex motion directions. The thick lines are hi(
the trajectories ri(z) and r,(z) with E = Eg. Fig. 1
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P The trajectory ri(z) passes over the surface of the

sphere and describes outside this surface the motion
x of a ring with zero radius (r ~ a). This trajectory
corresponds to the liquid motion in the absence of
vortices. It 1s required to find the probability of
the transition from the trajectory r;:(z) to the tra-
Jectory ra(z).

To this end, we use the circumstance that Egs.
(1) are of Hamiltonian form. Indeed, if we intro-
duce p = {(w/2)pkr?, then we get from (1)
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Consequently, p and z are cononically conjugate
Fig. 2 variables. We can therefore introduce the Hamilton-
ian operator H(p, z) = E(r(p), 2z) and go over to the
one-dimensional quasiclassical problem of the transi-
tion from trajectory pi(z) to trajectory p2(z) by suprabarrier reflection. To
solve this problem we must find the classical transition point in the complex
Zz plane. Obviously, since the Hamiltonian 1s even in z, this point is located
on the imaginary axis. The thick lines show the trajectories pi(ik) and p,(ik)
with energies E = Ey. Their intersection k¢ is the transition point. The
transition probability is [7]
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where S is the action along the transition line.

We can calculate ImS in two limiting cases:
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In the general case it is impossible to calculate the pre-exponential fac-
tor A in (4). To estimate this coefficient, we note that the motion of the
liquid is not potential in a layer of approximate width a next to the wall.
This solenoidal layer can be replaced by an assembly of vortices with radii on

'the order of a, distributed with a surface density n ~ u/alk|. The factor A
is proportional to the flux of these vortices, to the cross section for thelr
scatterlng by the inhomogeneity, and to the number N of the inhomogeneities,
i.e., A~ u?RN/a|k].

ImS is independent of the radius R when u << |k|/R. It is necessary to
ascertain whether this quantity depends on the shape of the inhomogeneity. If
the shape of the inhomogeneity is given by r? + B%2z%? = R?, then the calculation
becomes much more complicated. When u << |K[/R however, it 1s possible to
determine the principal term of ImS from the following considerations: The
trajectory ri(z) gasses over the surface of the imhomogeneity and, consedquently
its equation is r? + B2%z% = R? From this, going over to the imaginary axis
z = ik, we obtain p;(z) = (1r/2)p|<(R2 + B2%2k?). p2(z) depends little on z at
small u, and can therefore be regarded as constant on the imaginary axis:
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The trajectories intersect at the point
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From this we get (see (4)):
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Thus, the inhomogeneity shape most favorable for vortex formation is that of
half a flat disk (B + «).

In conclusion, the author thanks S.V. Iordanskii for suggesting the prob-
lem and directing the work.
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1. As 1s well known, elastic scattering in a single crystal exhibits inter-
ference properties even for relativistic electrons of small wavelength, inas-
much as the wavelength transmitted in the longitudinal direction (along the
particle motion) (h = ¢ = 1, k = me2z2'/3)
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can greatly exceed the interatomic distances. Ter-Mikaelyan [1] investigated
this effect in the Born approximation for scattering by a single crystal as a
whole. The condition for the applicability of perturbation theory
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(v = p/E is the velocity of the relativistic electron) imposes a rigid upper
limit on the thickness L of the single crystal in the electron motion direction.
The purpose of the present communication is to call attention to the fact that
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