of the spin S, whereas for the Ising model we have a decrease of the Curie tem-
perature at 8 = 1/2, and an increase at S > 1.

The authors are grateful to Professor Heber for discussions.
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The appearance of a high anomalous plasma resistance in a large number of
experiments (particularly in collisionless shock waves [1]) 1s attributed to
the appearance of ion-acoustic instability [2]. The ion-acoustic instability
can arise, however, only in the case of sufficiently strong anisothermy, Te >>

Ti‘ Yet an anomalous resistance is observed also when thils condition is not
satisfied [1, 3].

Recently, in connection with the problem of anomalous resistance, the in-
stability at electron cyclotron oscillations (Bernstein modes) has been under
discussion [4 - 9]. The Bernstein modes are oscillations with a wave vector
that 1is strictly or almost strictly perpendicular to the magnetic fields, and
have frequencies on the order of Ny - If current flows through the plasma,

then the oscillation frequency turns out to be, owing to the Dopglgr effect,
in the laboratory frame where the ions are at rest, w' = Wy, = k-vd, where

%d is the drift velocity. At sufficiently large k and v, it is possible to

d
decrease strongly the frequency in the ion reference frame, to make these os-

cillations interact with the ions at w' ~ va. An effect such as wave in-

stability with negative energy sets in. These oscillations have a rather large
growth increment, y n wHe(vd/vTe). Unlike in 1ion sound, the instability sets
in also at T, > T _.
i e

The purpose of the present article is to derive an expression for the
anomalous resistance that results fromthe buildup of Bernstein modes. The main
question is the explanation of the nonlinear mechanism that leads to saturation
of the oscillation growth. For ion-acoustic instability, such a mechanism
would be induced scattering of waves by ions (nonlinear Landau damping by ions)
[2]. For the Bernstein modes, the principal role is played by electronic non-
linearity. We use, just as in the theory of strong turbulence [10], the fact
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that the resultant turbulent transport coefficients play a stabilizing role.

In this case the appearance of the anomalous resistance itself (anomalous scat-
tering of electrons by oscillations) will lead to stabilization of the insta-~
bility. From the condition that the instability increment in the turbulent
plasma should vanish we obtaln the value of the anomalous resistance. Electron

scattering by oscillations with a still-unknown frequency Veff will be taken in-

to account by introducing into the kinetic equation for the electrons a colli-
sion integral having the same form as the Coulomb integral. TFor the correction
to the distribution function f ™~ espl[i(kx - wt)] we obtain the equation

. of e of,
- :(cu—kvlcos ¢)f — wHe—éz + — E = S5tf, (1)

m avx

where ¢ is the azimuthal angle in velocity space, v, is the component of the
velocity V perpendicular to the magnetic field, and the ordinary frequency of
the Coulomb collision is replaced by the effective one, so that the plasma re-
gsistance is o = nez/mveff. The dispersion equation for short-wave (kpe >> 1)

cyclotron oscillations is

2

wpl - -Z.Z
€ =1+ {1+ iynZ e - g(Z)] 4+
Kz, (2)
“’pze @ ko w
4+ —— {1l - e e i 16,5 Vatf -
kzv%-e Vinkp (0 - 0y,) V(e - ane)2
where
22z, o ~-kv, /T, Ve
Y(Z)y =2Ze e dt, Z, = ——nr, Vie SV 4 Po = .
° \/2va1. m, (¥

Let us consider the case when the drift velocity is much less than the electron

. 2 2.2 27 _ 2
thermal velocity, vy < 3(VTevTi/n)(1 + k rde), Tie Te/Mnnoe . The real part

of the frequency is equal to w = nwy, + Aw, where

1+ k22 + 8(1-y) - iOynZ, exp(-Z})
oo = e S T (3)

VZ2mkp 11+ k2l + O(1 - ¢)1° + OynZ, exp(- Z})}

here © = Te/Ti’ Zi = (ane - E-%d)//Evai. The imaginary part of the frequency,

under the condition Ti > Te, is equal to
v = 0.3 wp vyl ve (T T e K22 2= TLA(T, /T, Yy v/ v ) (%)

Owing to the presence of the large "Pitaevskii factor" kng [11], the stabiliz-
ing role of the collision becomes appreciable already at small Varp: In the
stationary state, when the exponential growth of the oscillation stops, veff

is determined from the condition vy = 0. The most dangerous modes are those

with k = ane/vd and n = 1. With increasing oscillation amplitude, the value

eff increases. The harmonics w = nwy, become stabilized when a value on
2.2 2 2 -

the order of v_pn v Y(vd)/k Pe (y/n )(Vd/vTe) is reached, where Y(Vd) is the

linear increment, i.e., the high-order harmonics are the first to be stabilized.
When Verr reaches the limiting value (see (5)) all the modes reach saturation.

of v
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We thus find that

Va r"‘l‘zle v'lz' -2
Veff == 0.02(——-)(1*" ——2— -——2-. a)H‘. (5)
YTe “Doe Vd:

Verr turns out to be small owing to the "Pitaevskii factor" kzpé. The resis-

tance determined by (5) is much lower than the resistance due to the ion-acous-
tic instability [2], but on the other hand the condition Te >> Ti is not needed

here. The anomalous resistance of the Bernstein modes leads to a shock-wave
thickness on the order of

A= /o, )M/ M, (T,/T)> (M mt/s, (6)
A= (c/w, yM/m)/8, (T, /T,) << (M/m)Y/6 .

The last estimate agrees well with the experimental data [3]1. 1In addition
to the cyclotron instability at Ti 2 Te there can develop in the plasma an in-

stability of the electron-sound type [12]. For this instability, the quantity
Vopp wHe(m/M)1 % is larger than (5) [13]. However, in those cases, when the

electron-acoustic instability does not have time to develop and go over to the
nonlinear regime, owing to the smallness of the growth lncrement (y
wHe(m/M)l/z) (for example, in collisionless shock waves), the principal role

will be played by the anomalous resistance considered above.
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