Ty 0 5 1031 11 - | ef cos (g, + ¢ES)]‘/E;7FE_’ )

where ¢ = arg [TL(T Y¥], If Fg = 1,2 x 10‘3FS = 72F then at ¢Y = 0 we
have IIm Tu | > 0.95/(10" SFY), and at ¢ = -45° we have ]Im Tu | >
0.93v/(10" FE) The first of these Values of |Im THF| corresponds to rh o>

S S

2.5 x 10 7, and the second to Fg > 2.1 x10 7. In order to reach the latter

limits it is necessary to have: a) CP violation in the K. - 2y decay, b) an

L

anomalously large probability of K, - 2y, ¢) an anomalously strong 27 - 2y

S
interaction, d) an anomalously strong 2w -+ 2y interaction. The simultaneous
occurrence of these four anomalies is extremely unlikely.

If FI = 4 x 10_4, which does not contradict any of the experiments [2],
then the possibilities (1), (2), and (3), correspond to lower limits Fu/F
>2.9 x 1077, 1.8 x 1077, and 1.1 x 10”7, respectively. The best of the pub—
lished results is Pg = 7 x 10 6PS [10]. As reported by Professor Kleinknecht,
a preliminary result fg = 1.5 % 10—61"S was obtained at CERN.

A detailed analysis, the results of which will be published separately,
shows that strong 27 - 2u interaction (7) does not contradict the available
experimental data on the verification of the quantum electrodynamics of the
muon, namely g = 2, elastic and inelastic scattering of muons by nucleons, pro-
duction of muon pairs in collisions of hadrons, and the levels of u-mesic atoms.
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(1971).
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1. A particle moving in a substance excites continuously the atoms with
which it collides in the substance as 1t moves. The successive excitation of
the immobile atoms along the particle path is equivalent to motion of a "train
of excited atoms. The longitudinal dimensions of the train are determined by
the lifetime T of the excited state, and are macroscopic for relativistic

"
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particles. The transverse dimensions of the train for ultrarelativistic par-
ticles are also macroscopic [1]. Thus, a train of excited states follows the
particle at the same velocity, and this circumstance can be used to register
the particle.

The dielectric properties of the excitation train differs from the dielec-
tric properties of the rest of the substance. This difference 1s appreciable,
for example, for frequencies that are close to the difference between the ener-
gles of two excited states of the atom (molecule) of the substance, wz1 = Ep; -
Er h=c =1). In this frequency region, the dielectric constant of the un-
excited substance € does not have any natural frequencies, and the dielectric
constant of the excited substance does. Owing to the difference between the
dielectric constants and owing to the train motion, a plane electromagnetic
wave passing through the excitation train is deflected and changes its fre-
quency; this can be used to measure the particle velocity.

2. The macroscopic dimensions of the train of excitations and the large
wavelength of the field make it gosgible to use macroscopic electrodynamics for
an estimate of the effect. Let Pi(r, t) be the change of thg polarization of
the excited matter compared with the unexcited one, and let J be the current
density of the moving particle. The total magnetic field is given by the equa-
tion

AH(R, &) + w2 H(R, &) + 4rrot j (R, w) = 4n iwrot PI(R‘(L))C (L)

In the first approximation, we neglect the excitation of the substance and drop
the right-hand side of (1). The solution is then the sum of the self-field of
the charge and the unexcited substance, ﬁl(ﬁ, w), and of the field of the inci-
dent plane wave g(ﬁ, w). The second approximation is given by the field devia-
tion ﬁz(ﬁ, w)

/\Hz(R, w) + wz(Hz(R, w) = triorot PR, ),

where the quantity H: 1s neglected in the calculation of the right-hand side.

By solving the equation, it is easy tg find the energy flowing in a solid

angle dQ in the frequency interval dw (k = nwve)

7] 2 dwdQ 2

d(n, w) - | felwtdt [dPrem *Trot P (x, #) | s (2)
‘ 4772\/‘

3. The change of fthe polagizagion ?1(;, t) is due to the simultaneous ac-
tion of the plane-wave field (Hg¢, Eo), and the field of the moving particle
(ﬁl, %1) on the substance, and in this sense it constitutes a nonlinear effect.
Assuming the fields ﬁo and E; to be small compared with the atomic fields., we
can expand the pglarization in powers of the summary field Eo + El, after which
we write for ﬁl(r, t)

Pir.t) = xtE_El + 2E(E ED} + X {EEZ + 2E _(E,E )}, (3)

The nonlinear susceptibility X is a material characteristic of a type simi-
lar to the dielectric constant €; dispersion leads to a dependence of x on the
frequencies of all the fields. The nonlinear susceptibility x was investigated
theoretically and experimentally in a number of papers [2, 3], and generally
speaking the value of X for a given substance can be found in an independent
experiment. The deviation of the field acting on the atom from the average
field leads to anomalously large values of X in substances with large refrac-
tive indices [2, 3]. :

When B, >> B, we can retain only the first term in (3), and it follows
from (2) that
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© *dwdQ
873 Ve (w)

+ lQ(k+ko)"|28((u.+w°-kV—kOVHa )

i@, w) = X*THQKk -k, ) "8l ~w,~kv sk, v)+

where T is the total interaction time,

Q(p) - n‘des{tkE:l@l(p;s)El(p;s))'+ [kE:(p;s) X
e e}

E,(R,t) =Elcos(k R -w_t);

E(q) = 2'—: (v(qv) - qe 1) (q? - (qv)%e(qv)~ 1.

L 4

When ﬁl << ﬁo we can retain only the second term in (3) and

»2dew dQ

dé(nv w) =

x?T2n°(8(w - kv)4|[k E, (k)] (E2)2+ 2KE?] x

(o)
° £2
x(ESE (k)| '+ {8(w - 20,- kv + 2k v) [[KE,(k - 2k )(E0)? +

2
Y2LKESPUESE (k- 2k ))|"+ 8 (w + 20 - kv - 2k_v) [k E,(k + 2k )} x
1
x (E3)? + 2[kE2I(E2E (k + 2k, ))|211. (81
It is important that in (4) and (4') the angle 6 between the direction of de-

flected wave k and the particle velocity v is rigidly connected with the fre-
quency of deflected wave w:

1 w ~k v w -k v
cosf = '<l¥ ° 2 ) or cosf@ = Lé?Z——o—g—)r

vyelw) [3) vyelw) [3)

which makes it possible to determine the energy of the particle by measuring
the angle of inclination of the wave of a given frequency. Unlike the case of
Cerenkov radiation, it is possible to choose the values of ko and w such that
for any particle velocity the angle of inclination lies in the region favorable
for the measurement.

i, The intensity of the deflected wave can be greatly enhanced by using
the resonant character of the nonlinear susceptibility. It is possible here to
use either the already mentioned resonance we = E; - Ei1, or else multiple (two-
photon) resonances [3]. It is also possible, in particular, to use the fact
that the denominator of (4) contains an expression of the type

[k £ 2k )% ~ (@ 20 elw 12(00)12,

so that the intensity of the deflected wave increases when this expression is
small.
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The intensity of the deflected wave l1lncreases with increasing field inten-
sity Eg¢ of the incident wave. In this case, however, the nonlinear effects due
to the field Eo without participation of the particle also increase. Nonethe-
less, the use of the influence of the dispersion of the dielectric constant
makes it possible to weaken a number of extraneous nonlinear effects. The rea-
son 1s that in processes in which the self field of the particle participates
there is always a field component with a wave vector that satisfles the "syn-
chronism condition," and for nonlinear effects with plane waves this condition
is by far not always satisfied. The influence of the background of the Rayleigh
scattering will be negligible if the deflected-wave frequency w does not equal
Wo »

A detailed analysis of the indicated questions will be reported separately.
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[2] J.A. Armstrong, N. Bloembergen, J. Ducuing, and P.S. Pershan, Phys. Rev.
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The behavior of superconductors in alternating electromagnetic fields has
a number of distinguishing features. Thus, for example, if the frequency of
the radiation incident on the superconductor exceeds double the size of the
gap, then single-quantum absorption of the radiation, with breaking of a Cooper
palr, becomes possible. This effect is linear in the field. However, besides
the linear terms, the expression for the current contains terms of higher powers
in the field. These include terms cubic in the field potential, corresponding
to two-quantum effects, and also terms due to oscillations of the modulus of
the gap. The latter, as will be shown below, lead to a unique frequency depen-
dence of the characteristics of the superconductor.

To this end, let us find the change of the equilibrium value of the gap
under the influence of a weak alternating field. We assume this field to be
transverse, and the phase A equal to zero. Assume also that everything occurs
in a flat film, the thickness of which is small compared with the spatial di-
mensions of the variation of A and A, so that it is possible to disregard the
coordinate dependence of these quantities. Assume further that the number of
impurities is sufficiently large to allow us to disregard the character of the
electron reflection from the sample boundary.

The correction to the gap

~ d
N

w

d0,
[j; fee —eo (1)

~o00 47

is expressed 1n terms of the Green's function F (5) integrated with respect

> > - >
to g = ve(p - Pa)> feeiy = IFEE_w(p)dE.

ee~-w

For the functions integrated with respect to £ we have the system of
equations derived by Eliashberg [1]
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