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1. The usual phenomenological theory of K® and K° mesons (see, e.g., [1,
2]) used in the discussion of the CP-invariance problem is based on the most
general principles of quantum theory (superposition principle, unitarity) and
on the essential additional assumption that the KS and KL mesons decay ex-

ponentially. This assumption, which is equivalent to the well-known Weiskopf-
Wigner (W-W) approximation [3], states that the mass distributions of the Kq

and KL

earlier [4] to the large sensitivity of the results of the phenomenological
theory (e.g., the unitarity relation, CPT tests, T-invariance) to the validity
of this assumption. We shall show below that within the framework of the CT-
noninvariant theory the CPT-invariance requirement forbids single-pole distri-
butions of the KS and KL meson masses. Within the framework of the CP-invari-

mesong have a single-pole character. Attention was called already

ance theory, on the other hand, a single-pole distribution of these masses is
permissible.

2. We assume that the theory is CPT-invariant but CP-noninvariant, i.e.,
[CPT,Hl.= 0, [CP,H} £, (1)
where H is the total energy operatorl)
H = Hg, +Hy+HWk=H°+HWk. (2)

Let |K°> and |K°> be the normalized eigenvectors of the strangeness operator 3
and of the operator Ho [1]:

S|K°> = 1{K® >, SIK°> =-1K° >, H |K°> =meolK® >,
H,|K° > = mgo{K°>, [S,H1=0, <K°|K°>=1=<K°|K">, (3)
< KejKe> =,

) . .
1/The notation is that of [1].
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By virtue of the proposed CPT invariance ([CPT, Ho] = 0), we have Mmgo = Mzo.
Under these assumptions [1] we get [K°> = CPT|K’>. Let {|[¢(m)>} be a complete
system of orthonormal eigenvectors of the operator H:
Hig(m > = mlg(m>, <@ml¢(m)>=5(m=-m) €Y
We expand the vectors |K°> and |K°> in terms of this complete system:
| K®> = fego(m)] p(m)> dm, |K°> = fcgo(m)| ¢(m) > dm, (5)

Since |K°> = CPT|K°>, it follows from (5) on the basis of the proposed CPT-in-
variance that

©ko (m) = legolm|? = lego(m)|® = wgolm) (6)

i.e., the mass distributions (in the sense of (5)) of the K° and K° mesons are
identical.

3. We define the vectors of the KS and K; mesons ri, 2171:

|Ks>=p|K®> + q| K°>, |K, > =plK°> - q| K°>, Ip|2:iq]2=1

(7
<KgiKg > =1, <K [K; > =1, <Kg}K > =<K |Ke> = [pi?-iq]?
From this definition and (5) we obtain
cg(m) = < ¢(m) {Ks > = pcyolm) + qego (m) (8)
?
cL(m) = < ¢(m)‘KL> = pCKo (m) —chc(m)
so that ws(m) = Ics(m)l2 and wL(m) = |cL(m)|2 are the mass distributions of the
KS and KL mesons and determine, on the basis of the Fock-Krylov theorem [5],
the decay amplitudes:
< KglKg(t) > =< Kglexpl - iHt 1Kg> = pg(t) = fexp[-imt] wg(m)dm (9)
<K K (t)> =< K_lexp[- iHtK > =p (t) = [expl- imt]lw (m)dm
From (8) we obtain
ckolm) = (2p)~eglm + ¢\ (m)], cgolm) = (2q)~Leglm) - ¢, (m)]. (10)
Substituting in (6), we obtain as a result of the CPT-invariance, within the
framework of the CP-noninvariant theory,
< Kgl K > [leg(m|2 + fep (m)]|?] = [eg(m)c (m) + cg(mlcy (m)], (11)

which connects the mass distributions of the KS and KL mesons. The mass dis-

tributions |eg(m)|? and le (m)|?, which satisfy (11), will be called admissible.

We note that the CPT-invariance condition is automatically satisfied with-
in the framework of the CP-invariant theory, and imposes no limitations on the
admissible distributions of K} and KJ meson masses. Indeed, in this case
[CP, H] = 0 and consequently
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H| 4,(1)(,,,) > = mj ¢(”(m)> , H| ¢(2) {m) > = m| ¢(2)(’") >
CPIgMm > = 1M (m) >, CPLg@(m) > =~ | $P(m) >, (12)
< ¢ (m)| ¢ (m) > =0

and

[Ke> = [cfD (m)i ¢ (m) > dm + [cfi(m)|p P m)> dm (13)
|R°> = fc;(elo)(m)fqb“)(m) > dm + fck‘,z,)(m)] qS(z)(m) > dm

On the other hand, by virtue of the CPT-invariance we obtain, just as in (6),

led(m |2 = Tego (m1% el (m1® = 1@ m, (14)

Since the eigenvectors IK3> and |K3> of the CP operator are defined as

ike> =(1/vak ko> + |Ro>), 12> <(ABX Ko>~ | K°>), <KPIKS =0 (15)
K> = fe{Dm) | g0 (m) > dm, [KS> = [c{P(m)| ¢ (m)> dm ’

we obtain, with allowance for (13)

im =QA2ZTeMm, <@ m =(1/v2)ec D (m) (16)
cgo (m) =(INV2)e(Dm), @) (m) = IVZ )eP (m)
and the CPT-invarianc gonditions (14) are s?t%sfied for arbitrary mass dis-
tributions w,(m) = IC?I (m)|% and wz(m) = |c{?)(m)|? of the K} and K mesons.
In particular, both single-pole distributions of the K¢ and XJ masses (with W-W

approximation) and two-pole distributions (the model of the induced poles [6])
are admissible.

4, We now formulate the main statement of this paper. Within the frame-
work of a theory that is CPT-invariant but CP-noninvariant, single-pole distri-
butions of the KS and KL meson masses are not admissible. More accurately, if

cs(m) = ¢g(m)/m-mg ~ iTg, c (m)=¢,(m/m-m + il (17)
mg Am, Dg T, ¢slms - iTg) 40, ¢, (m ~iT, )40, (18)

then the "preparatory" analytic functions ¢S(m) and ¢L(m), which have no com-
plex singularities, are not admissible.

We éhall prove this statement by induction. The CPT-invariance conditions
(11) go over on the basis of (17) into

I (m 12 = 18, (m) || gslm)| < Ksl Ky >=1)expliarg pgm)- iarg g, (m]]x

(19)
m-m + il m-m -il, (’""’"L)z"' FZ
X+ exp [~ iarg ¢g(m) + iatg $,(m)] ———-—-—-1} + |¢S(m)|2________ =0,
m=mg + ,‘[‘S m-mS-iFS (m-ms)2+l}2
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Taking (18) into account, we readily obtain from (11)

~<Kg| K >l gg(mg — iTg)|?/2iTg = | pg(mg ~iTs) | ¢ (mg—iTs)x

(20)
x(ms-mL— il"s +irL)exp[iarg¢S{ms—irs) - arg ¢L(m5—ir$)-l'
Let us solve (19) with respect to [¢(m)]:
| ¢y (m}] = 1 — < K¢l K >-1| ¢5(m) | {expliarg ¢o(m) - iarg b, (m]x
- i m-m -il
5 m mL_+'rL +expl -iargdslm) +iarg ¢,_(m)]~-——~—L——-—-_E- +
m-mS+lrs m—mS-il"S
(m - m )% T (21
V/;- <Kg| Ky >=2 gpgim) 2toaa 12 - |¢S(mH27;r_______ i )

—ms)z +F§
From this, taking (20) into account, we find that ¢L(m) has a singularity at
m= mg - iFS. This contradiction completes the proof.

5. The inadmissibility of the single-pole K, and K. mass distributions

3 L

means that the Weiskopf-Wigner approximation is incorrect within the framework
of a CPT-invariant but CP-noninvariant theory. This limitation on the validity
of the Weiskopf-Wigner method does not coincide with the known limitation im-
posed on this method by the non-exponential character of the decay laws [7, 8],
due to the threshold behavior of wS(m) and wL(m), by virtue of their semi-

finite nature (the spectrality principle). It is easy to note that the condi-
tion of semi-finiteness of w (m) and wr, (m) satisfles the CPT-invariance condil-
tion (11).

The non-admissibility of single-pole distributions of the KS and KL masses

changes significantly the situation with the CP-invariance problem [1, 273, par-
ticularly the paradox with the KL + 2u decay (see, e.g., [9]). The most criti-

cal test of the entire problem would be an investigation of the reaction
e~ + et + p KS+KL (22)

as noted by the author earlier [10]. 1In particular, the non-single-pole char-
acter of the KS and KL mass distributions would produce in (22) interference in

the channel of the decay into two plons, whereas thilis interference is strictly
equal to zero in the ordinary phenomenological theory with violation of CP~in-
variance and with a single-pole distribution of the KS and KL masses.

A detailled investigtion of the CP-invariance problem in connection with
the arrived-at conclusion that single-pole KS and KL mass distributions are in-
admissible is planned for future articles.
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A number of authors have shown experimentally and theoretically that the
forbidden band of a disordered semiconductor is "jammed" with discrete levels
(see, e.g., the review article [1]). An investigation of the behavior of the
carriers in a random field shows [2] that this circumstance is due not to some
concrete singularities of the structure of glasses or ligulds, but to the very
existence of spatial fluctuations of the potential - regardless of their physi-
cal origin. In this sense, one should include among the disordered materials
also those (perhaps even ideally crystalline ones) with sufficiently large
Maxwellian relaxation times [3], and also substances in which a sufficiently
intense low-frequency acoustic field with random phases of the component har-
monics has been produced. Indeed, if the essential frequencies are low com-
pared with the reciprocal values of the free path time and of the Maxwellian
relaxation time, then the energy U of the interaction between the carriers and
the acoustic field can be regarded as a static quantity; the random character
of wvariation of U in space 1s ensured by the randomness of the phases. Such a
formulation of the problem is meaningful under conditions where sound is am-
plified by a stream of electrons, when by virtue of the very structure of the
absorption coefficient (see, e.g., the review [U4]) only waves in,a limited
range of frequencies and wave vectors are effectively amplifiedl). We shall
henceforth have in mind precisely such a group of waves with a central wave
number qo.

Obviously, the discrete fluctuation levels which arise in the random phase
under consideration can play the role of ordinary traps (the influence of the
latter on the: sound amplification coefficient is considered in [5, 6]). This
will be the situation if the corresponding time of electron capture turns out
to be small compared with the time that the given group of waves stays in the
crystal (this condition imposes a limitation only in the case of motion of
acoustic phonons; it 1s necessary here also that the domain, as i1s usually the
case, be of macroscopic dimensions over which self-averaging of the considered
random quantities can occur). The difference compared with the ordinary traps
consists, however, in the fact that in this case (a) the traps are produced by
the noise 1tself, and their number 1s determined by the strength of the sound P

ye are referring, of course, to incoherent waves, 1.e., to the amplifi-
cation of noise.
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