i.e., it is smaller than the contribution of the 2P branch cut (the latter is
v1/E). Thus, although enhanced diagrams do lead to a broadening of the peaks
and to a decrease of the valleys between them, they cannot, generally speaking,
smooth out the peaks completely.

It is of interest to determine the ratio of the values of on at the peak

"af" to the values of o, at the peak "2af." It can be easily estimated by

starting from the ratio of the contribution of the (PP) branch cut to the con-
tribution of P to ¢ ; we obtain

tot
cza

tot

0(2a¢) 1

N2 1 Ny
a(af) vZ m)(—ﬁ)= _c("‘ )’ (6)

19 N

where ¢ determines the deviation of the quantity N (the vertex of the emission
of two P by a hadron) from diagonal (c¢? = 1.3 - 1.8; see [53). The ratio
(N'/N)2 enters in (6), since when the reggeons are cut, generally speaking, a
change takes place in the value of the vertex N. The factor 1/v2 in (6) takes
into account the broadening of the "2at" peak.

Observation of oscillations in o, in experiment would be of very great
interestl). The presently available data [6] on the distributions of 0n con-
tain excessively large errors, and it is therefore desirable to refine them.

In conclusion we thank V.N. Gribov, I.D. Mandzhavidze, S.G. Matinyan, and
K.A. Ter-Martirosyan for useful discussions.
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QUASIFIELD IN SUPERCONDUCTORS AND INCREASE OF TC UNDER NON-EQUILIBRIUM CONDI-
TIONS

A.G. Aronov and V.L. Gurevich

A.F. Ioffe Physico~technical Institute, USSR Academy of Sciences
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The superconducting transition is a second-order phase transition. In
this sense it is analogous, for example, to the transition in magnetically
ordered systems. It is known that when an external magnetic field is applied
to a ferromagnet, the phase transition vanishes, and the ordering parameter
(the magnetization) remains different from zero at all temperatures.

1)We note that the data of [6] at Eip © 424 GeV point to a possibility
of osecillations of o, (peaks at n = 6, 10, and 14).
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Is there an analog of this external field for
superconductors? We shall show that such a "quasi-
field" can exist under non-equilibrium conditions.

We consider a semiconductor or a semimetal with
the band scheme shown in the figure. Under the in-
fluence of light with a definite spectral composition
(see the figure), the electrons go from the valence
band 2 into region A of the conduction band 1, which
lies below a superconducting gap of width 2A. This
frees places near the top of the valence band 2.

The electrons®) flow out of the region A of the
conduction band via two channels. They go over prin-
cipally from the bottom of band 1 to the free places
of band 2 via direct radiative transitionsz). The
corresponding time of spontaneous emission will be
denoted by TA2. In addition, by absorbing a phonon

with energy larger than 2A, they can go over into

region B of band 1, which lies above the supercon-
ducting gap. The corresponding characteristic time
Tag will be assumed large (e.g., because the width

of the gap is larger than the characteristic phonon
energy).

The outflow of electrons from region B is due
also to two causes. First, these are phonon emis-
sion processes, which cause the electrons to return
to the region A (the corresponding time TBA will also

be assumed large in comparison with the time g of the

electron-phonon collisions inside the region B).
Second, these are indirect transitions from the region
B immediately to the freed places of band 2, with a

characteristic time TB2.

LN

Band scheme and
scheme of transi-
tions under the in-
fluence of light.
The light contains
the frequencies w <
wi. Near the top of
band 2 a certain
number of empty
places 1s freed as

a result of the ex-
cess of electrons in
band 1 in comparison
with the equilibrium
value.

Let us examine the stationary state, when the electron distribution does
not depend on the time. Since the electron-phonon collisions rapidly establish
an equilibrium inside each of the regions A and B, and A & B transitions are
rare, the distribution function in each of the regions is a Fermi function, but
the chemical potentials My and up are dif ferent. The average value u =

(uA + uB)/2 increases with increasing total number of electrons in band 1. It

can be shown that the position of the center of the gap in the spectrum of the
single~particle excitations coincides precisely with this gquantity. Then the
distribution functions of the excitations below and above the gap will be

{ Top - i —r
A - -
FP( 8y (exp _f._T__ “ 1) R {p = 3 \;/f; + (1)
g€ = (p*/2m) - u, p is the quasi-momentum, and m is the effective mass. The

p

gquantities 8u and § are determined from the corresbonding balance conditions.

1)Actually, it would be more correct to speak here not of electrons but of

excitations in the superconductor.

Z)Indirect transitions also take place, but in this region they can be

neglected in comparison with the direct transitions.
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Using Bogolyubov's well-known procedure [1]3), we obtain an equation relat-
ing the gap with the distribution function of the excitatlons
d3p 1—2Fp _ d3p 1—25’

S (2)
P> p 2nh)> yE2 +A? P< b, Q2ah)> V€& +A?

1- 3
2

or, substituting for Fp the function (1)

3 —
L (B MY RS- S (22)
2 ) (2ah)> v 2+ Al 27 2T

The integration, as usual, is carried out over the energy region 2ﬁwD (wD is
the Debye-phonon frequency) and g is the effective constant of the electron-
electron interaction.

At Su # 0 and A -+ 0, the integral in the right-hand side of (2a) diverges.
This means that Eq. (2) has a non-zero solution A at any temperature T. Thus,
Sy plays the role of the quasi-field.

At Su/T >> 1, the solution of (2a) in first approximation is of the form

~Spu/T

'A=A°[1-2e KO(A/T)] , (3)

where Ap is the gap at §u = T = 0, and K¢(x) is a Macdonald function. This
case was in fact considered by the authors earlier [2].

At Spu/T << 1 and A << T <<'ﬁwD we have

2T/ 8y

T 2T T M
/_\:T(__T_) =Texp(—5—;—lni), ()

where TC is the phase transition point at 8u = 0. Relation (4) is wvalid when
T > Tc.")

We make a few concluding remarks.

1) It is extremely difficult to satisfy inequalities of the type Taa >> T8

in experiments. If there is no strong inequality, then the simple formulas of
type (4) are no longer obtained. One might assume, however, that even in this
case, in some region of temperatures and intensities, the effect will remain in
force, since its existence is formally connected with the divergence of the
right-hand side of Eq. (2), which is due to the specific non-equilibrium char-
acter of the distribution function in the presence of a gap.

3)Estimates show that at reasonable light intensities the corrections to
the excitation spectrum due to the field of the light wave are still small, as
is assumed in the derivation of (2).

”)The question of raising Tc of a superconductor in a strong microwave
field was considered earlier by Eliashberg [3].
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2) The indicated non-equilibrium character of the distribution function
can exist only because of the gap. This means in turn that the considered
state is metastable and can be obtained by first illuminating an equilibrium
superconductor, and then raising the temperature.

3) The calculation does not take into account the finite lifetime of the
Cooper pairs. This account should decrease the value of the ordering param-
eter A, and it is possible that the superconductivity at T > TC will be gapless.

The authors are grateful to A.I. Larkin, V.S. Maleev, G.E. Pikus, and G.M.
Eliashberg for interesting discussions.
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Van der Waals forces between macroscopic bodies (e.g., between two plates
~ regions 1 and 2) can be calculated by an electrodynamic method using the fluc-
tuation-dissipation theorem. The corresponding theory was initially developed
(see [1, 2], Sec. 92) as applied to two half-spaces with parallel boundaries,
separated by an empty gap (region 3). A generalization of the calculations to
the case of a gap filled with a medium was realized, however, only by using the
complicated formalism of the temperature Green's functions. At the same time,
the results obtained in [3] for filling of a gap with an arbitrary medium were
recently obtained [4, 5] by an incomparably simpler procedure. Namely, the
free energy F or the internal energy U of the system (media 1, 2, and 3) are
represented in the form of sums of contributions of harmonic oscillators with
surface-oscillation (wave) frequencies wa, corresponding to the problem in

question. For example, it is assumed that

ﬁwa

- _ Fo,
Ub) = 240y, Th log, T) = =2 cth oz, (1)

where £ is the width of the gap 3, on which the frequencies w, depend, and the

index o combines both the discrete variables and the wave vector k in the plane
of the gap. Knowing the frequencies wa(z), we obtain U(R) or F(R), and by dif-

ferentiating with respect to & we subsequently obtain the force f(L)', which
coincides with that obtained in [1 - 3]. 1In principle it is easy to generalize
the method to the case of more complicated configurations; in the particular
case of ideally conducting plates in vacuum, this method reduces to a procedure
already long in use [7] (see also [8, 9]). Both in this limiting case, and in
the more general case, when all the media 1, 2, and 3 are non-absorbing, the
meaning of the expression (1) is obvious, and it is obtained formally by stan-
dard quantization of the field in the medium (see, e.g., [10]). The theory of
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