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The time evolution of a beam of neutral K mesons is usually described [1]
by the Schrodinger equation for a two-component wave function wa(wgwu = N is the
total number of particles)

,._dd’_lﬁ =Hy = (M-il/2) ¢. (1)

Here Hg' is a second-order matrix, which can be expanded in Paull matrices
H=h_ +hpops €=1,72,3, (2)

hk are complex numbers. We choose a representation in which Y = o3 (hyper-
charge). CP = 0; (combined inversion). If CP parity is conserved, then h, =
hy = 0, and in the case of CPT symmetry hs = 0. All the observed gquantities
are expressed in terms of the density matrix

P2 = g ® g%, Spp = N, (3)

which can be represented in the form

1
p =—2—N(l+-b{a[). (1)

For pure states (3) we have Zbi = 1. By virtue of Eq. (1), the density matrix
satisfies the equation

i—— = H, - pH", (5)

the solution of which is p(t) = exp(-th)p(O)exp(iH+t).

Let us assume that weak interactions lead to an equation more general than
(5):
d

. de
l;f—:ﬂp, (6)

where (ﬁ is a linear operator acting in the space of the matrices p(]z is a
matrix with two pair of indices, a tetrad). Equation (6) is linear in p and
therefore does not contradict the superposition principle. The solution of (6)
can be written in matrix form

p(t) = W(t)p(0), (7

where W is not a direct product of two matrices. Application of Eg. (6) to the
matrix p instead of (5) can cause the pure state to become mixed in the course
of time. This is formally expressed in the fact that the quantity sz is not

conserved. Naturally, the operator‘;{ must be such as not to violate the main
properties of p as a density matrix, viz.,
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A. Hermitian property, p+ = p,.
B. Non-negativity, Tr p > 0, det p > 0.
C. "Unitarity," dN/dt < 0.

Since we are dealing wilth decay, it suffices to consider times t > 0. The con-
ditions A to C+are identically satisfied for Eq. (5) (condition C is satisfied
if I = (1/i)(H" - H) is a positive matrix).

For an analysis of Eq. (6) it is convenient to consider, besides the mat-
rix p, a real 4-vector P, with components

po = _2__N’ Pe: —i—sz, (8)

For pure states pg - pi = 0, i.e., the vector Py lies on the upper "light cone."

The mixed states correspond to "time-like" vectors lying inside the cone:

pg - pi > 0. The time evolution of the system is described by real linear trans-

formations, under which the vector Y does not go outside the cone, and the com-

ponent pg¢ decreases (for an unstable system). Formulas (6) and (7) take the
form

doy
_.;__ = - G’\V p# » p,\(f) = w/\[,l.(')le (0)) w = exP:(— G') . (9)
t

We put
A~ 1
GM‘ = 98)\“"6)\;1; 93‘4*(600 +G‘£" (10)

Conditions B and C lead to limitations on fthe quantities Gku' It follows from
condition € that GOu is a time-like vector. As to non-negativity, the necessary
conditions are quite complicated in form. The sufficient conditions, however,
are easy to formulate. If the matrix

F =96 +GTy(n = diag(1,~1,-1,-1)) (11)

is non-negative, then exp(lgt) det p does not decrease, and det p does not
vanish. The usual equation (5) corresponds to F = 0. The transformgtion of the
vector °x with time is then a direct product of the Lorentz transformation by

uniform compression along all axes, exp(-gt), and the vector Pa does not leave
the cone.

It is very important that the positiveness condition can be formulated in-
dependently of the usual (Hamiltonlian) terms. The point is that when a beam of
K® mesons passes through matter, there are added to the "vacuum" Hamiltonian
terms describing the interaction of the K mesons with the nuclel and depending,
in particular on the K-meson velocity and on the density of the medium.

The solution of (9) becomes much simpler in the presence of CP symmetry.
Let us consider this case and use it as an example to trace qualitatively the
difference between the solutions of Egs. (5) and (6). CP-inversion corresponds
to the transformation (pa, P1, P2, P3) * (Po, P1, =P2, -Ps). Equation (9) con-
serves CP-parity if the component pairs (ps, p1) and (p2, p3) are transformed
independently, i.e., the matrix G is a direct sum of two second-order matrices.
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The solution of (9) reduces then to a calculation of exponentials of real
second~-order matrices. The number of the K: and K. mesons varies with time in
accordance with the following law:

-r - -aI,-T
N(1)=e UN(O)+ '21""' 2t e T Gins,
1 -B
x lig5 9N, 0) +e "N, 01,
r 1 (I -T,) (12)
- - - t
N(t)=e 2'{Nz(ﬂ) -5 (t-e ! 27)sing x

x [eBN,(O)_ tg-é]— alwz(m” ,

where T'i and Tz are the widths of the Ki and K, mesons, 8: > 0 characterizes
the deviation of the theory from the canonical one, and B is an arbitrary param-

eter. We present also the time dependence of the numbers N of the K and K
mesons, assuming for simplicity that N_(0) = O:

N (t) :%N(O)[ I“'(l—smS chg) + e 2'(14.- sind,chf) &

+ 2exp [— —;— (Ty+ L) f - 2t [(cospt - sind,sin ysinpt)}. (13)

Here py is the mass difference, and 6, > 0, X > 0, and y are three more param-

eters. The theory thus contains five additional parameters.

The number of parameters increases even more if CP-violation is taken into
account. The formulas become much more complicated, but if the CP-violation is
assumed to be small and perturbation theory is used, then the result can be
readily written in explicit form.

The most significant distinguishing feature of (12) is the presence of two
exponentials in the decay of the Ki mesons. If I';jt >> 1, after most K mesons
have already decayed, there still remains a certain number of CP-even mesons
that decay with a time characteristic of K, mesons. However, without violating
CP parity it is impossible to explain the experimentally observed K® > 21
decays at considerable distances from the source. Such a possibility is ex-
cluded, as is also the "independent particle model," by the known experiments
on vacuum regeneration, in which it has been shown that there is interference
in the K° + 27 decays.

According to the experimental data the parameters §;, 8§, and A are small
and barely exceed 10~%. However, to establish their scales correctly, addi-
tional data are needed. Of particular importance is the performance of a "com-
plete experiment” in which one could determine all the four elements of the den-
sity matrix at a given instant of time.

Equation (6) for the KK system should be the consequence of an analogous
equation for the entire (K® + decay products) system. The question is whether
it i1s possible, without violating the condition of non-negativity and the con-
servation of the probability (Tr p = const) and of the energy, to construct an
equation that differs from the canonical one, still remains open. We know that
the well-known relaxation equations (cf.,e.g., [2]) for the density matrix
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describe the interaction of the system with a thermostat, and therefore do not
conserve the energy, and lead also to irreversibility.

An hypothesis that the equations of quantum mechanics have a more compli-
cated form than (1) or (5) was advanced by V.M. Galitskii already a few years
ago. In particular, he consldered a linear equation for the density matrix
e}ements of the K°K® system. I am grateful to him for an interesting discus-
sion.

In a recent paper [3], Eberhard also discusses the possibility of describ-
ing a system with the aid of the evolution of a density matrix that does not
satisfy an equation of the type (5). The scheme proposed by him, however, does
not contain any equation whatever for the density matrix, and this scheme is not
equivalent to the approach discussed here. In addition, the question of energy
conservation still remains open.

The author is grateful to A.D. Dolgov, V.I. Zakharov, I.Yu. Kobzarev, L.B.
Okun', V.I. Roginskii, and I.S. Shapiro for interest in the work and for a
discussion of its results.
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There are presently grounds for assuming that the main contribution to the
hadron interaction cross section at high energies is made by processes of the
"ladder" type [1], Fig. 1. The characteristic kinematics of such processes is
such that all the produced particles have small transverse momenta, and their
longitudinal momenta are ordered, so that the momentum of each next particle is
several times larger than the momentum of the preceeding one. The paired ener-
gies of the neighboring hadrons are small and it is possible to calculate the
particle scattering cross section at high energies if one knows the interaction
amplitudes at low energies.

Unfortunately, if we construct a ladder in which the exchange is effected

by particles with zero spin (pions), then, at the experimental values of the
coupling constant, such a model ylelds a cross section
that decreases like S-°-7 [2], and if the coupling con-

— ) stant is increased to such an extent that the cross sec-
f [ tion oy . becomes constant, then the 7#m scattering cross
.y section at low energies becomes larger than the unitary
limit, and © turns out to be too large
3 g L—— tot
%ot
i 3
o [F— g 0" 300 mb (st m=m_) (1)
v Nm? P
—4
where m is the mass of the emitted particle and N is the
dimensionality of the isotopic multiplet.
Fig. 1
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