LASER BASED ON MANGANESE CENTERS IN ZINC SULFIDE

Yu.M. Popov

P.N. Lebedev Physics Institute, USSR Academy of Sciences

Submitted 28 March 1972

ZhETF Pis. Red. 16, No. 1, 3 - 4 (5 July 1972)

A new type of laser, using impact excitation of manganese centers in a zinc-sulfide lattice by carriers heated by an applied electric field, was reported in [1].

However, the experimental values cited by the authors for the current density j ($^{\circ}10^{-2}$ A/cm²) and the electric field intensity E (10^6 - 10^7 V/cm) cannot result in a gain α $^{\circ}10^3$ cm $^{-1}$, for the following reasons.

In the case of luminescence centers, the gain is connected with the spontaneous radiative time $\tau_{\rm r}$ by the well-known relation:

$$\alpha = \frac{\Delta Nn}{c_{r_{\rho}} \rho_{\lambda} \Delta \lambda} , \qquad (1)$$

where ΔN is the inverted population, $\rho_{\lambda}\Delta\lambda$ is the number of radiating oscillators in the half-width $\Delta\lambda$ of the spontaneous emission line per cm³, c is the speed of light, and n is the refractive index of the medium.

The power P_{r} per cm^3 of the spontaneous emission satisfies the relation

$$P_r \geqslant \hbar \omega \frac{\Delta N}{r_r}$$
.

Expressing $\Delta N/\tau_{_{\mbox{\scriptsize P}}}$ by means of (1), we obtain

$$P_{r} \geqslant \frac{16\pi^{2}\hbar c^{2}n^{2}a}{\lambda^{4}} \frac{\Delta\lambda}{\lambda} , \qquad (2)$$

where λ is the wavelength at the maximum of the spontaneous emission ($\lambda \sim 5900$ Å, $\Delta\lambda \sim 700$ Å).

Substitution of the experimental values of [1] in (2) yields P $_{\rm r}$ > 10 9 W/cm 3 , whereas the pump power in the experiment was jE $^{\circ}$ 10 4 - 10 5 W/cm 3 , i.e., it could in no way supply the spontaneous emission power at a gain α $^{\circ}$ 10 3 cm $^{-1}$.

[1] N.A. Vlasenko and Zh.A. Pukhlii, ZhETF Pis. Red. $\underline{14}$, 449 (1971) [JETP Lett. $\underline{14}$, 306 (1971)].