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It follows from the experiment of Clark and co-workers [1] that the proba-
bility of the KL + 2u decay 1s approximately one-third the theoretical limit.

One of the explanations of this fact, not yet refuted by experiment, might be
the assumption that the superposition principle is violated (this possibility,
to which Kobzarev called attention, was discussed in a review by Dolgov, Zakha-
rov, and Okun' [2]).

Quantum equations that violate the superposition principle were proposed
earlier by Laurent and Roos [3] to explain the CP-violating decay KL + 27. In

the cited papers, however, the question of the applicability of nonlinear
quantum-mechanical equations was analyzed from the physical point of view,.

We show in the present paper, first, that a probabilistic interpretation
of the wave function and of the transition amplitudes (S matrix) is nontheless
possible in a theory that violates the superposition principle. Second, we
show that in such a theory there exist real conserved physical quantities
(energy, momentum, angular momentum), which are connected as usual with the
symmetry properties of space-time. In this sense one can visualize the exis-
tence of quantum physics in which the superposition principle does not hold. All
the foregoing is illustrated by an example of systems with a finite number of
degrees of freedom, i.e., with a nonlinear generalization of quantum mechanics.

We denote by y¥(x, t) the wave function of a system of several particles,
x standing for the aggregate of all the coordinates (for simpliclty we assume
all particles to be spinless). The nonlinear equation for the wave function
can be written in the form (h = 1)

d
[H+ F(x, ¢ wwww;‘tf- (1)

Here H is a linear Hermitian operator that includes the kinetic-energy operator
He and the particle interaction potentials V(x), and F 1s a nonlinear operator.
We' shall regard F as a real function of x, ¢, and y¥ (nonlinearities of a dif-
ferent type will be considered in another paper). We assume also that all the
forces are short-range, i.e., when the interparticle distances are increased
the values of V and F decrease sufficiently rapidly. Let ¢; and ¥, be two

solutions of Egq. (1). Then, using the standard procedure for deriving the con-
tinuity equation, we obtain

]

_ét_'<L’/1!¢'2>:i<l,/llF(l)—F(2)llﬁ2>- (2)
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In (2) we have put for brevity

- *
F(a) = F(x, (/ja' ‘/’a);
and the scalar product <w1|wz> is defined in the usual manner:

< lﬁ”[i‘/’2>=f‘/’]*¢zdx‘
If ¢y = ¥ = ¢, then (2) leads to conservation of the norm:

d
— < ly> =0 (")

dt

This equation ensures the possibility of interpreting |v(x, t)|2? as a proba-
bilify density, if it is assumed that

<glyg> =1, (5)

It must be emphasized that an arbitrary normalization of the ¢ functions 1s not
permissible, since the properties of the solutions of (1) depend significantly
on the value of <y|y>. The probabalistic interpretation fixes the normalization
(5) which must henceforth be regarded as obligatory. From (3) 1t follows also,
when Y1 # Y2, that in general

<l/ll¥l./!7\’ A0 . (6)

d
at B

The inequality (6) distinguishes the quantum theory without the superposition
principle from the usual linear quantum mechanics. It signifies, in particular,
that the Y functions, which are orthogonal at the initial instant of time, may
turn out in the future not to be orthogonal. This cilrcumstance affects quite
strongly the properties of the S martix. The latter is introduced in the same
manner as in the usual theory, with the interaction turned on adiabatically at

t = -0, We denote by wi(x, t) the solution of (1) under the initial condition
for ¢.(x):
i

Ul = =) - gl g (%),

The functions ¢i(x) are the solutions of the wave equation for the noninteract-

ing particles and are assumed to be orthonormal and comprising a complete sys-
tem. Then, at t = +o, when the interaction is again turned off, we should have

l/l,. (X, + 00) = (/1,-”) = EI:S,, (/)I (7)
from which it follows that
S = < gD (8)

The quantities Sij can be identified with the amplitudes of the transitions

i » j. In fact, using the completeness of the system ¢, and Egs. (4) and (5),
we readily obtain

TS P =<y T e = (9)

Thus, it is permissible to regard ISiJ.|2 as transition probabilities. On the
other hand, taking (6) into account, we conclude that
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%SiiS:i =<y A0, kA (10)
in spite of the orthogonality of the ¥ functions at ¢t = -»., Formula (10) means
that in the quantum theory without the superposition pr1nc1ple the S matrix is

not unitary, but satisfies the relation

SSt* =1+ g,

where the Hermitian matrix n has, by virtue of (9), zero diagonal elements. We
note that the matrix n can be dlagonallzed by means of the unitary transforma-
tion n - UnU s but in this case the 8 matrix will not transform canonically

(s » usu™) owing to the nonlinear dependence of the solutions w on the initial
basis functions ¢

We consider now the question of the conserved physical gquantities. It is
easy to show that the mean value <H + F> of the nonlinear "Hamiltonian" H + F is
not conserved in time (with the exception of the case of stationary solutions),
and therefore cannot be identifled with the energy of the system. To obtain
conserved quantities we can use a variational prineciple. Then, chooslng the
Lagrangian in the form

L= y*Hus "R i 0 b= o (4% e ey (11)

we obtain the equation of motion (1) in which

aR
- R + U¥* -—— . (12)
F 0 Tg*

Further, assuming that H is invariant against all transformations of the refer-
ence frames, including time shifts, and R varies in this case only as a result
of the change of ¥, we obtain in the usual manner the conserved values of the
energy E and of the momentum p:

)
E- <H:R>, p =i<3—> (13)
Jd X

(summation is carried out over all the particles). Since the energy E should
be real and furthermore, F must be real in order to conserve the norm, it fol-
lows from (12) and (13) that

R* = R=p(x [u!), F=Fflxilygl (1)

The dependence of R and F on |y| but not on ¥ and ¢¥ separately, ensures the
existence (for the nonlinearity of the type under conslideration) of stationary
states.

The foregoing construction of nonlinear quantum mechanics can be extended
also to include field theory with the aid of the formalism of Fock functionals.
The formulation of quantum theory without the superposition principle will be
considered in a more detailed article.

When writing this article, the author was greatly helped by numerous dis-
cussions with I.Yu. Kobzarev and L.B. Okun', and also discussions with V.B.
Berestetskii, M.S. Marinov, V.V. Sudakov, and V.S. Popov. Useful remarks were
made by B.L. Voronov, V.Ya. Fainberg, and E.L. Feinberg during a discussion of
this paper at the P.N. Lebedev Physics Institute. The author is grateful to all
the foregoing persons, and also to V.A. Chechin for the opportunity of reading
a manuscript of hls article.
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Many recent papers have been devoted to the electromagnetic contributions
to hadron scattering cross sections [1 - 7]. We calculate here the differences,
due to the interference between the electromagnetic and strong interactions at
energies E 2 300 GeV, between the total cross sections for the scattering of
particles and antiparticles. We show that the main contribution to the dif-
ference of the total cross sectlions of charged particles and antiparticles de-
creases logarithmically with increasing energy (v1/1n s) if the scattering cone
narrows down logarithmically.

As is well known [3, 5], the radiative correction to the amplitude of $1as-
tic scattering of charged particles (we shall speak, for concreteness, of m'p
scattering), which takes correct account of the contribution of soft photons,
1s given at high energies by

Ared(s R?2) - - L [ = AL (s, A-q) (1)
npP

where A is the photon mass and X is the momentum transfer.

Expression (1) leads to the so-called Bethe phase [81, ¢B = -0 1n (1/kezt),

where t = A2, and ze% = af In s + R2 is the slope in the amplitude of elastic
scattering. b

To obtaln the contributlon made to the difference between the total cross
sections 1% is necessary to employ in (1) the optical theorem. At not too high
energies (up to several dozen GeV), neglecting as a result the dependence of
the phase of the amplitude on the momentum transfer, we thus obtain

5 o - aF ) Re(An +p T An"p) <1 1 y> (2)
r = [ P N g -~ — ,
em o s ot a Im(Aﬂ+p + Aﬂ_P) o /\e['min

where t is the experimental resolution with respect to the momentum transfer

min
and v = 0.58 is Euler's constant.

We assume that the amplitude of the 7N interaction has a Regge-like behav-
ior. Then expression (2) corresponds to a YP' branch cut and decreases with in-
creasing energy like (1/s)!/2. Other contributions to the difference between
the total cross sections also exist and decrease in power-law fashion with in-
creasing s. These are the contributions of the beams to the yP' branch cuts
(see Fig. a), and also the electromagnetic renormalization of the residue of
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