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Kibble {1, 2] has shown that an electromagnetic behaves relative to an electron of energy

€ like a medium with a refractive index
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and therefore electrons, whose energy satisfies the condition

1)

2 -k <(e2E2 /? ), (1)

are reflected from the wave (E2 and w are the time-averaged squared intensity of the electric
component and the frequency of the wave)., In this communication we call attention to the

fact that in the presence of a homogeneous magnetic field with potential

A= -H (2)

the electrons penetrate into the wave regardless of their energy, and when e is lower than
a certain critical value all the electrons that enter the wave are dragged by it and acquire
a relativistic momentum in the wave propegation direction.

The problem of electron penetration in the wave can be solved by the usual methods em-
ployed to investigate the penetration of particles through a potential barrier {cf., e.g.,
[3]). If the electromegnetic wave is described by a potential

acos w(t ~z) for z>0
A= (3)
0 for 2<0; a=(a, ay,O}-Const,
then the condition for the continuity of the electron wave function and its derivative with
respect to z at 2z = 0 leads to equations for the determination of the intensity of the elec=~
tron fluxes reflected from the wave and penetrating into the wave; it also follows from this
condition thht the energies of the jncident and penetrating electrons are equal,

In the field of the electroﬁégnét{c wave, the role of the energy € of the stationary
states of the electron is played by the quasienergy [4], so that the comparison should be
made between the energy of the incident electron ¢ and the quasienergy €' of the electron in
the wave, The connection between the quasienergy €' and the gquasimomentum P, of an electron
in the fields of formulas (2) eand (3) is given by the following formula from [5]

e2a? a;(:'-px)z .

PL 'P3 + eH(2n + 1) - (%)

2 (eH)? -mz(e'-'pz)2

where n = 0, 1, +ss, N is the number of the Landau level of the electron in the wave (to sim~
plify the derivations, we describe the interaction of the electron with the external field
by a Klein-Gordon equation). Replacing €' in formula by e, we obtain the sought relation,

which we shall investigate for an electromagnetic wave of frequency w, in the optical region
of the spectrum (w >> wy = eH/e), end for nonrelativistic electron energies (e2 - m2

In this case, as can be readily verified, if the condition

<< n?),

l)We use a system of units in which ¢ =% = 1, and also the relativistic reference
point of the energy.
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o’ a ® o?a? (5)

is satisfied, only electrons with very large quasimomenta pz can propagate in the wave, and at
fixed values of n the electrons can have only two values of P, (the other two roots of (L)

are complex):

oy 0282

Pe1,2 =dltA); Aw— 1+ 1712, (6)
@ 2[m? +eH(2n + 1)]

ahen H = 0 and the electron energies correspond to the inequality (5), Eq. (4) has only com-

plex roots, i.e., in this case the electrons are reflected from the wave, as they should.
When the inequality opposite to (5) is satisfied, there appears in the electromagnetic

vave, besides the fast electrons, also an additional group of electrons (slow electrons) for

which the maximum value of the longitudinal quasimomentum is

g 0282
p' = (2 —m2 - .
z

2

For modern laser sources we have e232 << m2, so that for thié group of electrons p: << ¢, The

wwo groups of electrons are thus separated by a broad forbidden band for the quasimomenta p,.

In this limiting case, the characteristic features of the fast and slow electrons in the field

cf the electromagnetic wave consist of the fact that the fast electrons appear in the form of

two monochromatic streams with a relativistic quasimomentum directed along the wave vector of
he wave, whereas the slow electrons have momenta that lie in the interval 0 < P, < p .

In the phenomenon considered hefe the'electromagnetic wave behaves like a stream of
liquid, dragging with it the particles (electrons) that fall into it., At sufficiently low
energy €, all the particles entering the liquid are dragged, and only partial dragging of the
rarticles take place if the energy is larger. From the point of view of this analog, it is
natural that the "dragged" electrons have relativistic momenta in the direction of motion of
<he photon beam.,

The problem of determining the coefficient of penetration of the elec£ron into the wave,
2, reduces in the general case to a solution of an infinite system of linear algebraic equa~
<ions. It simplifies greatly for an electron energy satisfying the condition (5), and for
optical frequencies (w >> wH), for in that case the electrons propagating in the wave have
juasimomenta P, and P, that depend weakly on n.

Neglecting this dependence and the difference between P, and P,o» Ve can eliminate the
wave function of the electron in the wave from the system of equations obtained when the wave
functions are made continuous on the boundary z = 0., This yields for the penetration coeffi-
cient the formula
x , (1)
(e +P_ )2
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]l/2 and n is the number of the Landau level of the incident

where ;; = [32 - n° - eH(2n + 1)
electron, In the most favorable case, described by formula (1), §'2 ~ e2a2/2, and therefore
D~ h[e2a2/2m2]l/2. In focused radiation from a modern laser sourze, e2a2/m2 can reach
values on the order of 10'6, and then D~ 3 x 10-3.

The effect proposed here can be observed experimentally with the aid of an electron gun
whose cathode is placed in the field of a light beam, According to (7), the penetration
coefficient will then be larger for the electrons emitted from the cathode at a smaller angle
8 to the direction of the wave vector. In setting up the experiment it must be borne in mind
that the homogeneous magnetic field should be sufficiently strong. In fact, it has been
assumed here that the wave occupies the entire half-space z > O, In a real experiment, on the
other hand, the high-intensity light beam has a finite radius R, Therefore, our results re-
main valid only when the radius of the electron orbit in the magnetic field, r = pL/eH,
satisfies the condition r << R (p* is the projection of the momentum of the incident electron
on the xy plane). When § << 1 and p » elg|(p is the total momentum of the incident electron)
we obtain the following limitation on the magnetic field intensity (p* = p, ¢ 1s the speed of
light):

The author thanks V. I. Sheka for reviewing the manuscript and valuable remarks.
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