fast ions that accumulate in traps in which neutral atoms are injected [12]. In
connection with the latter, attention must be called to the fact that a numeri-
cal experiment on the quasilinear relaxation, in a plasma, of a group of ions
with large transverse energy in two-dimensional velocity space ("random" dis-
tribution over the phase shifts of the Larmor rotaticn) has revealed that the
resultant deformation of ion distribution function is similar to that observed
in the present study.
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It was shown in [1] that an experimental determination of the shifts of
the 5 levels of the pp-atom makes 1t possible, in principle, to determine the
sign of the real part of the pp scattering length.

The wvalues obtained in [1] for the level shifts AE for the states 1S and
25 turned out to be 0.9 and 0.1 keV, respectively. However, these estimates
of AE are gualitative in character (the pP scattering length was assumed egual
to 1 F regardless of the spin and isospin of the pp system).

In this paper we calculate the shifts and widths of the S levels (princi-
pal quantum number n = 1 and 2) of the pp atom in different spin-isospin states,
by using the Bryan-Phillips (BF) potential [2] for the nucleon-antinucleon
interaction at low energiles.

To calculate the level shifts, we use the real part of the BF potential.
Allowance for the imaginary part, which corresponds to annihilation effects,

2ko



leads to an additional level shift, which can be estimated by using considera-
tions analogous to the estimates of the binding-energy shifts of nonrelativis-
tic bound states in a nucleon-antinucleon system as a result of an annihilation
interaction [3]. Such estimates show that the magnitude of this shift does not
exceed 15 - 20% of the value of AE due to the real part of the potential. The
small parameter in these estimates 1s the ratio of the radii of the imaginary
and real parts of the potential, which 1s a quantity of the order of u/m, where

#  is the pion mass and m the nucleon mass. A numerical solution of the Schro-
dinger equations with a potential V = VC + VN (VC and VN are respectively the
Coulomb and nuclear potentials) leads to the results listed in the table.
. . — 25+l .
Level shifts and widths of pp-atom levels. X, is

the spectroscoplc symbol of the state =

| AE, xeVv I', keV

1's 0 0.2 0.43
o 1 0.85 0.17

) 0 0.5 0.25

IS, 1 0.7 0.33
1 ) 0,025 0.07

2'S, 1 0.105 0.13
, 0 0.065 0.04

2°5, 1 0.095 0.05

As seen from the table, the level shifts turn out to depend strongly on the
isotopic spin I of the pp system (the ratio of the shifts In states with I =1
and I = 0 is equal to U for singlet S-levels and to 1.5 for triplet levels).

The table lists also the level widths. They were estimated by means of the
formula

- (va,),| Y012, (1)

where O, is the annihilation cross section, V is the relative velocity of p and
P, (vca)O = 1im(v0a) as v > 0, and ¥(0)? is the particle density averaged over
the effective annihilation region. The quantity (vca)o for each state with
~given spin and isospin was assumed to be 45 mb (see [3]).

We note that the widths listed in the table should be regarded as upper
bounds, since the experimentally obtained quantity (VGa)O includes the annilila-

tion cross section not in the S states alone. We indicate for comparison that
the level widths calculated with a pure Coulomb wave function (i.e., without
allowance for the distortion due to the potential nuclear interaction) are equal
to 1.5 and 0.19 keV, respectively.

Our results show that the shift and widths of the pp-atom S levels are
very sensitive to the spin-isospin structure of the strong interaction at low
energies.

The authors are sincerely grateful to I.S. Shapiro for useful discussions.
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The energy of an electron in the field of a point Coulomb center Ze is
equal to (for the 1s level):

€, =V1-(Za)?, (1)

where h = ¢ = m, = 1 and @ = 1/137. This expression has a singularity at Z =

137. As noted by Pomeranchuk and Smorodinskiil, allowance for the finite dimen-
sions of the nucleus eliminates the Coulomb singularity, and formula (1) con-
tinues into 7 > 137. The value Z = Zc at which the 1ls level Jjoins the lower

contlnuum is called the critical charge of the nucleus. Quantum electrody-
namics leads to a number of characteristic predictions in the reglon 7 > Zc’

The main effect is the emission of positron by a "bare" nucleus, i.e., a nu-
cleus with unfilled K-shell (for details see [2 - 4]). TFor a spherical nucleus
with radius R v 10 F we have numerically Z, = 170 (see [2, 5]), which is far

from the region of presently known heavy elements. For this reason, it is neces-
sary to resort to another method of obtalning supercritical fields, namely, in a
collision between two heavy nuclei with charges 7Z; and Z2, such that Z1 + ZC >

Z, (such a possibility was first discussed in [6]; see also [4, 7]). When con-
sidering this effect, it 1is necessary to find first the "critical™ distance RC
= RC(Zl, ZZ) in the relativistic problem of two centers, 1.e., that distance R

between charges, for which the ground-state level of the quasimolecule (Zi, Z2,
e) drops to the limit € = -1. We present here the results of such calculations.
We confine ourselves to the simplest case Z; = Z, = Z.

At 7 < 137, the radius of the nucleus is immaterial, for there is no "fall-
ing to the center" in a Coulomb field with Z < 137. In other words, the break-
up of the total charge 27 into two parts separated by a finite distance R is in
itself sufficient for a regularization of the problem. The curve of the level
gg = €9(7Z) in the two-center problem reaches £ = -1 without having on its path
singularities of the type (1). TFor this reason, we shall regard the nuclel as
point-like (the radil of heavy nuclei are ro ~ 8 F, which is much less than the
K-orbit radius r, = (1 + 2vV1 - z°)/2¢ = 700 F for uranium).

K
The actual excess of 27 over ZC is small (for uranium nuclei, § =
(27 - ZC)/ZC = 0.08, and for Cf + Cf we have § = 0.15), and therefore R <‘ﬁ/mec
= 1. In the region 8§ << 1 we can obtain for Rc a.simple formula by using the
method of matching the asymptotic expansions. We shall explain the main idea
with spinless particles as an example.

The form of the wave function Yy at small and large distances is determined
from the Klein-Gordon equation [7]. Near the nuclei we have

bo (&) = (&7 =) =07, o1y 1-¢2, @
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