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We idnvestigate here adiabatic damping of a soliton as a result of absorp-
tion of its energy by resonant plasma particles. According to [1], the soliton
energy dissipation in such an interaction is one of the mechanisms that lead to
formation of a collisionless shock wave.

The dissipation is connected mainly with particles reflected from the
"hump" of the potential energy in the soliton. The phase trajectories of these
particles, plotted in the wave coordinates v' = v - Vph and z' = z —‘ﬁtvphdt,
are shown in the figure. The particles move in the accelerating phase of the

field on trajectories I, and in the decelerating phase on trajectories II, When
afo/avph < 0 (fo(v) 1s the equilibrium distribution function of the plasma)

there are more particles in the accelerating phase, and the soliton is damped.
The nonlinear damping stabilization due to the phase oscillations of the reso-
nant particles [2, 3] does not exist for the reflected particles, and the am-
plitude of the soliton attenuates to zero as a result of interaction with such
particles. When afo/avph >0, i.e., in the presence of a beam in the plasma,

the dinteraction with the reflected particles leads to an intensification of the

soliton. The amplitude of the potential in the soliton 1ncreases in this case’
max , . .

to values e|¢] N mevph(vO - Vph) (VO is the beam velocity) much higher than

for a monochromatic wave. )

We consider first the damping of a high-frequency Langmuir soliton. Such

. . . : o>
a soliton is produced in a magnetized plasma (wHe wpe’ where wHe and wpe are

the electron cyclotron and plasma frequencles, respectively) if the wave propa-
gates at an angle to the magnetic field (k, # 0) with a phase veloclity vph >

(wpe/kL) (4, 5]. Assumlng Von = (o /%) (1 + 8), § << 1, we confine ourselves

max

to a soliton of small amplitude (e|o]| /mev;h) << 1. 1In this approximation

the equation for the potential of the Langmulr wave ¢(t, x, z') (for convenlence,
the prime will henceforth be omitted) takes the form

az¢ + k}_¢ = - ._.a_z._‘zs + i)ée_. 6¢ + _3_ mpe e¢2 -
9 x? 9 z? v;h 2 V;h mev;h
c‘)pze Z ¢ R (1)
-2 o1 J — dz’ + 4nen
ph -

The last two terms in (1) describe the slow
variation of the soliton parameters as it '

interacts with the resonant particles, and t=0 }v

Noes is the perturbation of the density of I I
the resonant electrons in the wave. All

the small quantities <8 have been trans- >~
ferred to the right-hand side of Eq. (1). \\ z
We seek a solution ¢ = ¢(°) + ¢(1) + .., y

of this equation by expanding with respect t:E__-—

to the parameter §. In the zeroth
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approximation we have

&) /= & (z,1) cos ky x..

(2)
We have chosen a solution satisfying the condition ¢(-x) = ¢(x). The spectrum
of k; 1s determined from the boundary conditions at x = fa. Thus, if the wave
propagates in a waveguide with conducting walls we have ¢(xa) = 0, k,;a =

7(2n + 1)/2, n= 0, 1, ... We shall consider henceforth the first mode with

n = 0, The equation for %(z, t), as usual, is ?b ained from the condition of
orthogonality of the right-hand side of (1) to ¢'%/(x):

2
O whegy, el 29l POt 9
2 2 - 2 2 3 oo
dz Vph 7 vi)h mev;-)h V;)h dt
4 a
- -Ez-e fn, coskxdx =90, (3)
. -

If the condition |8¢/d8t| << Sv h{SW/BzI is satisfied, Eq. (3) has a solution in
the form of a soliton p

3 3
= -aftjeh?—— , A-y— Ph, oo L, (4)

CA(+) 20 w '

eif(z,t)

mev

ph

The functlon a(t) is determined from the equation

oo F) z
f dz—z [ dz°
dz

]

e v, oo a
9 ay
Zy 3 phf dz =2 [ dx coskx x
ar wpea )

—s0 —-a

x [dvf 5

res (1 2, X, vhe

fres(t’ X, Z, v) 1s the distribution function of the resonant particles. We

transform the right-hand side of Eq. (5) by using the Liouville phase space con-
servation theorem dzdv - dzedve'’ and the condltion that the distribution func-
tion be constant on the particle trajectories, f(t, x, z, V) = f‘o(vO + Vph)'

The equations for the resonant—particle trajectories in the soliton field take
the form u = u, * [25°/me]1 2t /A, with the + and - signs corresponding to par-

ticles with vy > 0 and vy < 0, respectively. u is connected with z by the re-
lation

2
sh{—— = pshu, p? = é*;"s_f,, b, = qS(z:O):-ai:Rhcoslng

for particles that pass through with energy & > -e¢, and

z ~ £+e¢°
ShA —_#Chu, i = é L

for reflected particles, i.e., for & < -e¢y. From (5) we obtain the following
equation for o(t):

1)zo and ve are the initial coordinates of the particle on the phase tra-
jectory that passes at the instant of time t through the point z, v.
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da [T @pe 9f, m/2 o
— = - Ay —— =z a/?7 [ dé cos &) [ dE p?x
dt 7omgn vph ° —e¢0
., 986 1
00 chu Sh<U°+’\/~-—-K>
P=rloo Y [1+uzsh2<-'o+i\/-2“ __1“)]5/2
m, A
é h h< +'\/2a ')
—ed oo shv chlv_ +j —_
fopodeEr x fdug ——3 °z 127 : n. B/2
j=+1 1 ch ) ow .
° P= ° (e %ol [1+;T2ch2(uo +,‘\/-2—£.- jj (6)
m
e

To obtaln this equation, we have represented the equilibrium distribution

ctio . . -
function of the resonant particles in the form fo(vph + vo) fO(vph) +

VOBfO/vah and have eliminated the integral with respect to ze < 0 with the aid
of the condition z(-z¢, -vo, t) = =2(20, Vg, t). At times t that are large in

comparison with the time of flight of the particles through the soliton, t >>
(A/vph)(l//a), only the contribution of the reflected particles with vo < 0 is

significant in (6). We then get from (6) the simple equation

da JFf

2 ©
—_— 2 Zpe 2 ° 4372, (7
dt 3, “n_ 'ph vph“
the solution of which
a (0) @ of
ty = . - - pe 2 o
a(t) 1 a (0} 2 L= n vphav h (8)
) CoT
T

describes the damping of a Langmuir soliton as a
flected particles.
In a non-isothermal plasma (Te >> Ti) there

acoustlc soliton [6]. In such a soliton, unlike
have ¢ > 0 and the damping of the soliton is due

result of interaction with re-

can exist a low-frequency ion-

the one considered above, we
to the electrons reflected

from the "hump" of the potentlal. For a soliton of sufficlently low amplitude

- max 2
G e¢ /mivph

is calculated in analogy with the procedure used above for the Langmuir soliton.

<< 1, the damplng decrement v,(t) due to the reflected particles
1

The resonant electrons are captured in a potential well produced by the
ion-acoustic soliton. The phase "mixing" of the captured particles causes the
electronic damping decrement to decrease within a time t >> 1/w i.e., suf-
ficlently rapidly, to the value

Y:) SYivaeg << Yi e

peus’

The presence of Y: i1s connected with the adiabatic realignment of the electronic

trajectories in the field of a soliton with a time-varying amplitude. The elec-
trons thus do not influence the damping of the soliton significantly.
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Allowance for the damping due to the reflected ions leads, for times t >>

l/wpias, to the following formula for the amplitude of the ion-acoustic soliton:
ag (0) f .
a_(t) = ° , LT YN
CGED Ly T P )
24 s
. S s as . . . - 1/2
fOi(v) is the equilibrium distribution of the ions, and Wy g (me/mi) mpe.
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the results.
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1. Unified renormalizable theories of weak and electromagnetic interactions
with spontaneously-violated gauge invariance have been extensively discussed of
late [1 - 7]. These theories make it possible to describe in a unified manner
both weak and electromagnetic interaction, unifying the photon and the Wt posons
{usually with one more neutral vector meson) as gauge fields.

The proposed models [1 - 5] make 1t possible to describe purely leptonic
processes, but when they are generalized to include hadrons, many difficulties
are ralsed by the observed 3SU(3) and SU(6) symmetries of the strong interactions.
Thus, 12 quarks are needed in [2] to construct the known SU(3) baryon multi-
plets, and seven and eight quarks are needed in the models of {3, 4#]. In addi-
tion, in view of the integer charge of the quarks in the models of [3 - 5],
3U(6) symmetry 1s lost for baryons.

2. We propose in this article a renormalizable theory of weak and electro-
magnetic interactions with spontaneously-vioclated SU(2) x U(l) gauge symmetry,
including the usual SU(3) quarks with fractional charge, and allowing us to
preserve the observed hadronic symmetries.

We postulate the usual SU(3) triplet quark (p, n, A), two new quarks p'
and g with charges +2/3 and -1/3, and two new heavy neutron leptons, electronic
(E) and muonic (M), in addition to e, Vgs Hs and v“. The strong SU(5) inter-

actions are invariant, and the observed SU(3) symmetry is the low-energy 1limit
of the global SU(5) symmetry if the quarks p' and q are much heavier than the
triplet (p, n, A)

The gauge vector flelds, the SU(2) triplet (W+, S%, WT) and the singlet
B°, are introduced in accordance with
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