molecules that resonate with the coherent light Wave (the factor q usually lies
in the interval 107" for simple molecules to 10~° for complex ones), the rela-
tive amplitudes of the narrow resonances lle in the interval 0.1 - 10%. A very
important factor is the automatic tuning of the resonance frequencies when the
light-wave frequency is scanned along the Doppler contour of the optical transi-
tion, the absolute tuning range of the y-radiation resonance frequencies belng
w /w larger than the range of the optical transitions.

Since the coefficient of the resonant absorption on nuclear transitions is
small for a rarefied gas, the proposed method is most convenlent for the pro-
duction of narrow y-radiation lines with tunable frequency. The intensity of

the emission line with width rnuc is narrower by a factor 102 than the Doppler

width from a tube with gas filled with molecules with radioactive nuclei at a
pressure 10™2 Torr (g = 10~ G = 1, tube 1ength 100 cm, diameter 1 cm, obser-
vation solid angle 10™% sr) 1s equal to 107 T gamma quanta/sec, where T is the
radiative lifetime of the excited state of the nucleus.

The proposed method permits the performance of a number of fundamental ex-

(1)

periments. For example, by tuning a narrow Y-radiation resonance Wile wY

AY —'E0o$(wY/w0) + W in the vieinity of the wY + wY absorption line of the nu-
cleus and the target, it is possible to measure exactly the recoil energy of
the nucleus and the shape of the phonon spectrum [3]; the latter permits a de-
tailed 1nvest1gat10n of the vibrations of the nuclei in the crystal. Since the
quantity ko-v can be measured with very high accuracy by measuring the deviation

2 of the light-wave frequency from the center of the Doppler contour, the fre-
quency of the y-radiation resonance can be tuned with accuracy 6wY/w5 = GQ/wO,

which can reach in principle 10-'! - 107!3%,. This makes possible absclute meas-
urements of the y-quantum energy with accuracy wY/wO (10-*! - 107'%), which can

reach, in principle, values 10~%, and thus relate, with the same accuracy, the
energy scales of the optical and y-~ray bands. Naturally, the proposed method
makes possible vy spectroscopg in the region of nuclear transitions 107° <
[(wnuc/wY) - 1] < 1075 - 10", which has heretofore been inaccessible to modern

methods. We note that it is applicable also for transitions in which the Moss-
bauer effect does not occur- {for example, at a y-quantum energy much higher than
100 keV). )

117 R.L. Mossbauer, Z. f. Phys. 151, 124 (1958).
2] V.S. Letokhov, ZhETF Pis. Red. 6, 597 (1967) [JETP Lett. 6, 101 (1967)7].
3] W.M. Visscher, Ann. of Phys. 9, 194 (1960).
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We discuss in this article the cluster approximatinn (CA) "4 = 3 + 1" in
the integral equations for four particles. We have considered the variant of
integral equations proposed in [1], which coincide for four particles, accurate
. to the free terms, with equations of the Omnes type [2]. For a discrete spec-
. trum, these equations, written out for the components of the form factor F =
Go¥Y, take the form

\Fea - Feg . FPY
Bta, BOb (1)
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where a, b = (1jk) (2), 1j(k®) are different subdivisions of the four particles
into two groups, o €a and 8 ¢b are particle palrs entering in one subdivision
group a or b. In formula (1), A = A(z) (z is an energy parameter) is an eigen-

value, Vo is the free Green's function, and fg = XBQ:GWZB is the sum of the

bound amplitudes for.the subsystems 3 + 1 and 2 + 2. The CA "4 = 3 + 1" will be
defined as the approximate equations obtained by setting the amplitudes corre-
sponding to the subdivision "4 = 2 + 2" equal to zero: o = Tg = 0 for a =
“(1j)(x%). In this approximation, we neglect the nuclear singularities connected
with the threshold for the disintegrationinto two deuterons; therefore the
asymptotic wave function does not contain terms corresponding to the d - d chan-

nell). - Introducing separate Jacobili coordinates for each £ungtign Faul[a =
(13x)(2)] (see [17], formula 33)), we obtain for F(z) = F(k, P, 4 |z) the equa-
tion

- 3 ’ -1 31, .
AF -(m) FIW) +W(2) +WER)IA-I[ F(2) +F () d3k d3q”, (2)

where W = w(1> + 2w(2) (the indices 1 and 2 pertain respectively to the diagonal
(o = B) and nondiagonal (o ¥ B) amplitudes),

2
W) = Wlps ALKS Qllz- o= ) (n=123),

2m
F(n) = F(ALLK% Q) q’lz) (n =2,3),
L2 Q? g2 e Q2 q"? (3)
q +3q° 9"+ 3q
Q-5 b SF

The matrices An in (3) act on the column (¥ /k) (éP = @1, Q2); in a basis

(123) the matrices A1, Ay, and As; correspond to the permutations Pi,, P13, and
Pas, respectively.+ For identical particles, W and F in (2) are even under the
substitution ¥ + -K. The matrix A; in (2) can therefore be replaced by a unit
matrix.

It 1s easy to generalize Eq. (2) to take into account the spin isospin (ST)
variables. Let us consider the equations for the state with S = T = 0., Con-

fining ourselves to even potentials, we can expand poa of (1) in terms of two
ST functions characteriged by the ST values Su and iu of the singled-out pair a,

and also Sy and To of the singled-out triad of particles. The coefficients in
this expansion will be designated Fi’ where 1 = 0 and 1 are the values of the
isospin iu’ and the value of Sy is determined uniquely from the condition ia + s

1. Analogously, the amplitudes wgB

o

of (1) can be represented in the form of

projection operators with eigenvalues Wi}’ 2), where i and j denote the isospins

of pairs o and B. As a result we obtain

1)The class of diagrams summed within the framework of the given CA de-
pends also on the equation in which thils approximation is carried out. Thus,
for example, in the CA "4 = 3 + 1," the classes of the diagrams summed in (1)
and in the Yakubovskii equations [3] are different.
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3 ¥
A, () ke

Lows s iw.sl [F (2) +F,(3)] +
2\/2 4 io 4 1 o [+]

3 1 3
+ [—4- We, o+ —4—W,.51][F1(2)+ Fi@1 « - DW= W, @1F @)

3
SR @1 5 DN, () - W 0E,@ - F1(2)]}A“, ()

where

We = W (D + W2 « W, (), W,

- wil 2
= WD 2WD

Equations (4) are a system of multidimensional integral equations. The
use of a separable expansion for the amplitudes yields a system of one-dimen-
silonal integral equations. We shall consider a method, based on an expansion of
the Hilbert-Schmidt (HS) type [4 - 6]}, for making the amplitudes wij separable,

The first term in this expansion contains the contribution of a pole connected
with the 4 = 3 + 1 threshold, and also part of the contribution of two- and

. three-particle cuts. Allowance for the remaining terms corresponds to supple-

"menting the approximate expression for Wij until it becomes unitary; as will be

shown below, it results in a small correction in the problem of the discrete
spectrum of four particles.

The HS expansion for the three-particle amplitudes was considered in [T7]
(see also [8]). For a separable potential v;(k, k') = —(Ai/2m)gi(k)gj(k'), the
expansion for the amplitudes Wij takes the form

Wilk, p; k% p"t2z) =

Nl 2)

1
ST an w Ty Mimtler 1) (K T 2) (5)
where
A 1 P’
wim(k,piz)_: Vg, (k) wr.m(plz)d'.' (z - -————),
2m 2m
nm(z) are the eigenvalues and wim(plz) are eigenfunctions given by the formulas

of [7] (formulas (16) and (19)). Substituting in (4) the expansionz)
:
Fitkpoalz) = S (kplz- — )e, (9l (6)
m 2m

we obtain a system of one-dimensional integral equations for the function Crpe

The kernel of these equations is determined by the quadruple integral [dkfd3k.
Such a representation of the nucleus is quite inconvenient when solving inte-

_gral equations, and we therefore use 1n the calculations the expansion of the

eigenfunctions in series of K-harmonics [9] (see [7], Sec. 4). Using this ex-
pansion, we can carry out analytically the integration with respect to Qk and

represent the kernel in the form of a sum of double integrals. The detalled

2)\e have taken into account the contribution made to the state 07 only by
the amplitudes wij with L = 0. Therefore the function Fi in (6) depends only

on the moduli of the vectors ﬁ, 8, and a.
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procedure is described in a preprint of our Institute.

We have used in the calculations the Yamaguchi separable model, which cor-

responds to the low-energy NN-scattering parameters a = 5.372 F, ag = -22.827 F,
rog = 1.715 F, and L 2.704 F. The eigenvalues n (z) break up into two
classes, one containing n( )(Z) > 0 and the other n( )(Z) < 0., The three-
particle system has one bound state: nil)(z )y =1, ZO = -11.03 MeV. The results
of the calculatlonss) for the 0% states of four particles points to a rather
rapid convergence of the HS expansion as a numerical method in the four-body
problem. Thus, the first HS term makes 1t possible to calculate the eigenvalue
Xl(z) with accuracy ~0.1 - 1.5% in the interval 11.03 < -z < 45 MeV (the error

increases with increasing -z). The value of the energy of the ground state Z,

is obtained in this case with accuracy Vv1.5% (see the table). The accuracy of
the calculation of A,(z), and consequently of the possible excited states is
somewhat worse and varies from 5% at the threshold to 50% at z = -U45 MeV,

Binding energy of the ground state

mNumber No. of No. of i
of included | included | ; PA z
. +) ) a a
equations | 7m T
1 1 0 [39.061 [K__ =0 | 39,700
3 2 2 39.645 [K__ =2 | 37,250
5 3 2 |39.647 |- - -

The exclted 0+ state appeared in our calculations as a bound state lying
almost exactly at the threshold of the "4 = 3 + 1" disintegration. It 1s pos-
sible that when the K-harmonics with Kmax > 2 are taken into account, this

"} = 3 + 1" state will vanish, but Az2{zo) will remain quite close %o unity. The
table 1lists also the results of calculations in the pole approximation (PA),
which works well in the calculation of A;(z) (with an error ~1.3% at z = zy and
v10% at z = -45 MeV, the error in Z, being “v7%), and much worse for X,(z) (the

error here is ~50%). The excited level does not appear in the PA,

The authors thank Yu.A. Simonov for discussions.
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The behavior of the asymmetry of the cross section I = (o, - G“)/(G + G“)
of the photoproduction of the AT* isobar

y+p > A v a” (1)

is a very sensitive criterion for different theoretical descriptions, and per-
mits a choice between model representation of the mechanism of the reaction in
the case when all the models give a good description of the total and differ-
ential cross sections. To this end 1t is necessaty to study the behavior of the
asymmetry in a wide range of angles and energles of the photons. No such study
of the angular and energy behavior of the asymmetry near the threshold have been
made, and there are no experimental data.

We present here the results of a measurement of the asymmetry of the cross
section of the reaction (1) on a linearly-~polarized beam of photons at an energy
650 MeV in the m—-meson emission angle interval 45 - 120° in the c.m.s. The
polarized photons were obtained from an individual reciprocal-lattice point of
a diamond single crystal [1, 2].

The measurements were performed simultaneously with two magnetic spectrom-
eters [3] with solid angles 1.3 x 10~% and 8.2 x 10”2 sr. The 7~ mesons were
detected with scintillation-counter telescopes, and the momentum range was §.4%.

Figure 1 shows the dependence of the plon yield on the orientation of the
. dlamond crystal. One spectrometer was used to measure the asymmetry of the m~
" mesons from the reaction of binary production at an angle € = 90° and a photon
. energy E = 650 MeV, while the other spectrometer measured simultaneously the

asymmetry of the cross section of single photoproduction of 7t mesons for the
same energy and angle. The asymmetry for single production under these con-
ditions, according to our measurements, is £ = 0.6 * 0.05. In the binary photo-
production reaction, a near-gzero symmetry is observed in thils case.

The asymmetry is defined by the relation

1 R-1
P R+1

2=

2

where R = C /C is a quantity obtained directly from the measurements, equal

to the ratio of the 1 -meson yilelds from the reaction vy + p > p + 7t + 7~ when
the polarization vector of the photon beam is perpendicular and parallel to the
reaction plane, and P is the effective polarization of the photon beam. It can
be obtained by using the fact that the value of the polarization of the photon
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