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A variational calculation is performed of the critical dis-
tance Rc between colliding nuclei. In this calculation, the prin-
cipal term of the quasimolecule (Z, Z, e) drops to the boundary of
the lower continuum, and spontaneous production of positrons begins.

In connection with discussions [1 - 4] of spontaneous positron production in collisions of
heavy nuclei with charges Z; + Z» > Z. = 170, it has become necessary to solve the two-center
problem for the Dirac equation1 . The results of this calculation are very important for the
planning of experiments, since the production cross section of the positron and their energy
spectrum depend strongly on the distance R between nuclei [3, 6]. We recall that the critical
distance R, is defined as that value of R at which the principal term of the quasimolecule
(Z1, Zp, €e) that is produced when the nuclei Z; and Z, approach each other drops to the limit of
the lower continuum € = -1 (we put henceforth h = ¢ = mg = 1). The quasistatic positron is pro-
duced as a result of the dropping of the unfilled level to the lower continuum when the distance
between the nuclei decreases to R < Rc.

In the physically most important case, that of ''small supercriticality' (i.e., under the
condition Zy + Zp - Z; << Z;), all the quantities pertaining to the process of spontaneous posi-
tron production are expressed in terms of universal functions of the ratio R/R;, which have been
calculated in explicit form [6]. By the same token, the calculation of R. completes, in a cer-
tain sense, the theory of the phenomena that occur in the supercritical region, and allows us to
make the predictions needed for the experiments.

However, the calculation of the critical distance entails considergble mathematical diffi-
culties, since the variables in the Dirac equation with the potential V(r) = -a[(Z,/r1) + Za/r3)]
cannot be separate in any orthogonal coordinate system, and it is impossible here to obtain an
analytic solution of the problem. For a numerical calculation of R¢, a variational principle
was proposed [7, 8]. We report here the results of numerical calculations performed by the
variational method.

As shown in [7, 8], the calculation of R, is equivalent to a determination of the minimum
of the functional
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where w(;) is a traal function (two-component spinor) and U(r) is the effective potential in the
Dirac equation at the energy € = -1:
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Here V(;) is the potential that enters directly in the Dirac equation. To simplify the calcula-

tions, we put Z; = Z» = Z (identical nuclei). It follows then from symmetry consideration that
the exact solution takes the form
X (£, )
)=
, (3)

X, (&, n)exp(i o)

where £, n, ¢ are elliptic coordinates: & = (ri1 + r2)/Randn = (r; - r2)/R (1 £ § <, |n| < 1)
The functions ¥: and ¥; correspond to the projections of the orbital angular momentum A = 0, 1

on the axis of the quasimolecule (the z axis). Then ¥, and ¥, are respectively even and odd in
n, and in addition }3 vanishes on the z axis: ¥, « zp, where z = (1/2)R&n, and p = (R/2)*

[(E%2 - 1)(1 - n?)]'/? is the distance to the z axis. To attain good accuracy of the variational
calculations of Re it is necessary that the trial functions account correctly for the character
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of the singularity of the exact solution at the singular points corresponding to_ the Coulomb
centers?), and also at infinity. In this case, the form of the singularities ¥(r) is known [7]
and dictates the choice of the class of trial functions.

Near one of the nuclei we have £2 - n? << 1 and Y = (&% - nz)o, where 0 depends only on z.
Far from the nuclei we have £ >> |n| and Y « exp(-v8ZaRE). It is therefore more convenient to
use the variables x = £2 - n? and

x=£2_n2’y=rl2/(§z_nz) (0 < x < o}, 4)
We seek the extremum of the functional (1) on the class of trial functions
X, = $,(%) +y$,(x), X, =R %pzp, (x) (5)
Trial functions in this form make it possible to take into account in the vicinity of one of the
nuclei (x >> 1) the field of the other nuclei, and to take into account far from the nuclei
(x >> 1) the quadrupole correction in the two-center potential.
Substituting (5) in (1) we have
/4 =.fdx(p"i¢i ¢i' + q;'j¢i 4’,’ + 2'ij¢i’¢,’ )e (6)

Variation of J[¢] with respect to the arbitrary functions ¢;(x) leads to the system of equa-
tions

(0;97 +1ii#;) "= rii b = 9y = 0 N

the coefficients p, q, and r can be calculated in explicit form in terms of elementary functions.
For example,

Pll"x) =x[(x-1) ,° +2x/1] y
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A feature of this method is that the functional J[¢] is varied on an entire class of functions
93 (x}, i.e., a trial function is chosen with an infinite number of variational parameters. The
dependence of Y(r) on the significant variable x, in terms of which a singularity exists, is
determined by Eqs. (7) themselves. These circumstances ensure good accuracy of R.. We note
also that by virtue of the variational principle the true values of Rc can only exceed those
calculated by us.

In practice, the employed method replaces the solution of the system of two partial dif-
ferential equations (for ¥; and ¥2) of the boundary-value problem for the system of ordinary
differential equations on the semi-axis 0 < x < «. From the computational point of view, the
problem is made somewhat more complicated because the edges of the interval are singular points.
A method was found to get around this difficulty (it will be described in a separate article).

The results of the numerical calculations are given in the table. Here ¢ = 2Z/137, and
E¢ = 2(Ze)2/RC is the threshold incident-nucleus energy at which spontaneous positron production
begins. The total cross section for et production is given by o(E, Z) = g,f(E/E{), where f is
a certain universal function calculated in [6]; for example, £(2) = 1.7x10"%. The factor g
determines the dependence of the cross section on Z. We call attention to the rapid growth of
0, when Z increases from 90 to 100. The threshold energy Et is then decreased, by virtue of
which it is expedient to perform the experiment with as heavy nuclei as possible. Since R¢ is
4 - 5 times larger than the nuclear diameter, the performance of such an experiment seems per-
fectly realistic.
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Nucleus ¢ R, F E, , MeV 0,4+ b
Th 1.314 43,5 530 30.8
u 1,343 51,3 475 53.8
Pu 1.372 59.8 425 91,0
Cm 1,401 68,7 385 146,0
cf 1,431 78,0 355 225.0
Fm 1,460 88.0 330 341.0

1)The possibility of production of electron-positron pairs from vacuum in a strong elec-
tric field was predicted long ago in quantum electrodynamics, but this effect was not yet ob-
served experimentally. The spontaneous production of e* in a Coulomb field with charge Z > Z.
is of interest as a check on the Dirac equation in strong external field and as a check on the
properties of physical vacuum [1, 4], and also from the point of view of verifying the linearity
of the fundamental equations of quantum electrodynamics.

2)S:'ane the charge of each of the nuclei is Z < 137, there is no 'falling to the center"
in a Coulomb field -Zo/r, and the nuclei can be regarded as pointlike. The correction for the
finite dimensions of the nucleus at Z = 90 to 100 increases the energy of the principal term by
only Ae ~ 1.5x107% < 1 keV (see formula (12) of [9]).

3)Repeated indices mean summation. The system (7) has a solution satisfying the boundary
conditions (exponential decrease at infinity and smallest singularity as x -+ 0) exists only for
discrete values of R, if ¢ = 22/137 is fixed. The largest of these three roots determines the
Re(z) dependence for the main term.
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To verify p-e universality, a joint analysis was performed of
the data on deep inelastic u-p and e-p scattering. It is shown that
these data are compatible if the p-p-scattering cross sections are
renormalized.

We report here the results of a joint analysis of the data on deep inelastic u-p scatter-
ing, obtained in [1], and the data of the SLAC-MIT group {2, 3] on deep inelastic e-p scattering.
The main purpose of the analysis was to check on the p-e universality.

The data of [1] on u-p scattering were obtained at a muon momentum 12 GeV/c and q? < 4
(GeV/c)2. The e-p scattering cross sections were measured [2, 3] at electron energies up to
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