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An expression is derived for the field of a light pulse of
arbitrary initial shape, with Gaussian initial intensity distribution
over the cross section, passing through a zone plate. The variation
of the time-dependent shape and of the duration of this pulse in the
region of the zone plate is investigated. It is indicated on the
basis of this investigation that it is possible to estimate the dura-
tion of sufficiently short light pulses.

As is well known, the passage of a parallel light beam that is stationary in time through
a zone plate (say a system of concentric alternating transparent and opaque annular zone -
Fresnel zones) is similar to the passage of this beam through a focusing (defocusing) lens. We
consider below the passage of light pulses through a zone plate, and show that if these pulses
are of sufficiently short duration the focusing by a zone plate differs in principle from focus-
ing by a lens. The distinguishing features of focusing by a zone plate can be used to estimate
the duration of an ultrashort light pulse.

We consider for concreteness the passage of a parallel linearly-polarized Gaussian beam
with a time-dependent envelope f(t) and phase ¢(t) through a plate in which the transitions be-
tween the transparent and opaque zones are gradual; the plate is located in the plane z = 0. In
this case, the boundary condition at z = 0 for the transverse component of the electric field
can be written in the form
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Here r| = V- y2 is the deviation from the beam axis, a, is the initial radius of this beanm,

k = Q/¢c = 2m/A, ¢ is the speed of light in the considered medium, § is the "central" frequency
of the field oscillations in the beam, A is the wavelength corresponding to this frequency in
the medium, and the parameter R > 0 determines the position of the focal spot on the z axis. We
start from the equation
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(in_the region z > 0), with boundary condition (1) and with the radiation condition at
z5 + 1 >, We confine ourselves here to the case of greatest practical interest

A<<a <<R. (3

Leaving out the intermediate calculations, we present for & an expression that is valid under
the conditions (3)
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The three terms in this expression described the focused (E*), the unfocused (E°), and the
defocused (E~) parts of the light passing through the zone plate. Let us examine the expression
for E*. At Aw/Q << 1 (where Aw is the width of the spectrum of the incident pulse) we can
rewrite E¥ on the beam axis (r; = 0) in the form
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It is seen from (5) that if
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then the focusing by a zone plate differs appreciably from focusing by the corresponding lens.

We consider first a solitary incident pulse of initial duration T, without phase modula-
tion (¢(t) = 0)1). From Eq. (5) under condition (6) it follows that in the region of the focus
(z * R) the pulse (even if originally symmetrical) becomes asymmetrical in the course of time.
The corresponding light train has a steeper leading front and a less sloping trailing edge.
Under the stronger condition

2

a
r, << c;i N

the light train is strongly asymmetrical in the vicinity of the focus, namely, the spatial scale
of the leading front amounts to cT,, while the corresponding value for the trailing edge is
a%/R. Therefore the track of two-photon luminescence of two opposing pulses, one unfocused and
one focused by the zone plate, which overlap in the focal region, will have in this region a
relief that has the same features as the indicated light train (there will be only one 'step"
with scale c¢Ty in the interval a%/R)z). As seen from (5), an incident pulse can be regarded as
solitary if the time interval to the neighboring pulse greatly exceeds a%/cR. On the other
hand, if the intervals between the neighboring pulses are smaller than or of the order of a%/cR,
then it can be readily verified with the aid of (5) that the character of the relief in the con-
sidered track will be qualitatively altered in comparison with the case of a solitary pulse
(there will be several "steps" of scale cT;, in a single interval a%/R). Let us consider further
the case when the incident radiation is a stationary random process with envelope f(t) and phase
¢o(t) and with a characteristic correlation time Ty for the envelope fluctuations satisfying the
condition Tk << a%/cR. In this case a typical realization of the random process contains in the
interval a%/cR many (several) intensity peaks (the duration of each peak is on the order of Ty),
and therefore the given peaks are not solitary. We consider the track of two-photon luninescence
of opposing beams, one unfocused and the other focused by a zone plate, at the same ratio of
their average intensities (over the time ag/cR); this ensures the most pronounced relief in this
track in the case of a solitary pulse of duration T, = Tx. As seen from (5), the values of the
envelope fluctuations in the focal region are practically independent of the corresponding
values of £(8), just as a stationary process and its integral are mutually independent. There-
fore the track in question will not have a noticeable relief in comparison of the relief obtained
with a solitary pulse.

Thus, the use of a zone plate makes it possible to estimate the duration T, of a solitary
pulse from the shape of the relief of the considered track of two-photon luminescence, and to
distinguish the case of a solitary pulse in an interval ag/cR >> T, from the case of two or more
pulses in the same interval, and from the case of stationary random incident radiation.

We present also relations that determine, for a single pulse without phase modulation,
under the condition (7), the maximum attainable energy density If in the focal region, and the
value df of the focal-spot diameter:
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Here I, is the initial intensity on the beam axis. As seen from (8), focusing by a zone plate
under the condition (7) is much less effective than focusing by a corresponding lens.

Let us consider a numerical example. We assume d; = 3 and R = 30 cm. Then, according to
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(6), the effects in questions come into play at an incident-pulse duration T, < 3x107'? sec.

1)Here and throughout we have in mind the case of greatest practical interest, when the
width of the spectrum of the incident radiation is governed by the time variation of the envelope
f(t). This is easy to establish, e.g., by comparing the width of the incident-radiation spec-
trum with the longitudinal dimension of the relief in the two-photon luminescence track of two
identical opposing beams (not focused by a zone plate).

2)'I‘o be able to conveniently increase the dimensions of the focal region itself, one can
use beams that have been previously defocused (focused) with an ordinary lens and then focused
(defocused) with a zone plate.
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It is demonstrated with a simple model that as the angular
momentum of the nucleus is increased, a dynamic instability of the
spherical state can set in, and is due to the competition between
the pairing and the forces of quadrupole-deformation.

In connection with the observation of regular quasirotational bands in spherical even-even
nuclei [1], the question of the change of the internal structure of the nucleus with increasing
angular momentum I becomes timely. To attain I # 0 it is necessary to break the spherical pairs
and this can lead to a ''phase transition'" even if the static deformation in the ground state
(I = 0) is energywise not favored. This may be, in particular, the cause of the singularities
in the spectra of !8%Hg [2] and '°%,192pd ("V-event" [3]).

We consider a simple model [4] in which N outer nucleus fill a degenerate shell that in-
cludes 20 << 1 states and interact via pairing and quadrupole forces
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Here A = zvavag is the Cooper-pair operator, Q, is the total quadrupole moment, G and « are

coupling constants. The pairing Hp is diagonalized [5] by changing over to the pseudospin S
A=2S,-iS), A'=2(S +iS ), N=0Q+2S5, ,

Hp =const — 2G5(S +1),

where S varies from /2 (seniority v = Q - 25 = 0) to N - /2, when v = vpae = Nor (202 - N).

The minimum of Hp corresponds to v = 0, and the first excited state has v = 0 and is separated
by a gap 2A = 2GQ. At the same time, neglecting the higher multipoles, HQ yields a system of

rotational bands [4]
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where q is the reduced matrix element of the single-particle quadrupole moment, b =
(6/5) [Q(20 - 1)(202 + 1)]7}, and C is the Casmir operator of the SU(3) group. In the band in-
cluding levels with even angular momenta from 0 to I we have C = (4/3)bI(I + 3) [6].

In the absence of pairing, static deformation is favored. In the ground band, C is maxi-
mal and the limiting angular momentum is equal to

T =T, (N) :mv(l - %_) (4)
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