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By solving three-particle integral equations we calculated the vertex constants for the virtual decays
t—-d+n and t—d*+n, where d* is a singlet deuteron. The values

G%,=192 F and G2,.,=—0.380 F are obtained in a model with a spin-dependent separable potential.
"This is the first time that the constant G2,., has been calculated.

As is well known, ! three-particle amplitudes admit
of a simple resonant expansion, which is obtained by
applying a resolvent expansion, i.e., the Hilbert-
Schmidt method, to integral equations of the Faddeev
type. The Hilbert-Schmidt expansion provides a con-
venient basis for the understanding of three-nucleon
physics; in particular, recent studies have demonstrated
the usefulness of this approach for the study of the uni-
tarity condition in a three-nucleon system!?! and for
solving integral equations for four nucleons.!® In the
present article we show how the Hilbert-Schmidt method
can be used to calculate the vertex constants G of the
decays t—~d+n and t— d* +n (where d* denotes a singlet
deuteron). We note that the constant G,,«, is a very im-
portant quantity that can be used in the analysis of scat-
tering and reactions in nuclear physics, but until recent-
ly there were practically no theoretical methods of cal-
culating this constant,

We use in the calculations the same potential model as
in'!, namely a spin-dependent separable pair interac-
tion of the Yamaguchi type. In this model, the tritium
binding energy is E,=11.03 MeV.,

The vertex constant G,,, corresponding to the virtual
decay t—d+n is determined as the residue of the S-
wave doublet amplitude T(E) of the nd scattering, taken
at the pole E=E,:

62, = lim (E ~E,)T(E), 1)

E—»El

where E is the energy of three nucleons inthe c.m.s.
The normalization of the amplitude is as follows: T(E)
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=(~3n/m)e® sin6/k, m is the nucleon mass, &

=V (4735m(E+Ed5, E,=-2.23 MeV is the deuteron
binding energy, 6 is the scattering phase shift, and #
=c¢=1. G,,,2 has the dimension of length and will be
expressed in Fermi units. We note that the constant

G,,, can be expressed in terms of the coefficient N in the
asymptotic wave function of tritium in the d +n

channel:

Yo p) 2 NG p) € Gy TN Y (2)
where r is the distance between nucleons in the deuteron,
p is the distance between the mass center of the deuteron
and the third nucleon, ¢’4(7’) is the deuteron wave func-
tion (| ¢,(r)12d®» =1}, £ is the spin-isospin function,
and «?=(4/3)m(E, - E,).

We note also that G,,? is connected with the quantity
D? used in'¥ by the relation G,,,>= (3/2)D?; since the
values of D? are expressed in!*! in units of {10*MeV2F3],
we have numerically G2[F]=0.386D? [10* MeV?F3].

We use next the resonant expansion obtained in!!! for
the amplitude T(E):

T(E) :_2(3/ )3/2"2a0_(¢10+lgo)
12 . —~

2 wolps E)G,(E)w,, (p; EJ,
75
P :\/_2]‘1 (3)

where a,=vV-mE,;=0.232 F!, B,=1.450 F"! is the
reciprocal radius of the Yamaguchi triplet potential,
w,, are the vertices of the transition §,=d+n (6, is the
three-particle Hilbert-Schmidt resonance), and 6, (E)
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The vertex functions wgy (p;E,) and w,({p;E,). The points on the
curves correspond to the values wg(iv3/2 «;E,) and w, (V37 2x*;
E,) used to calculate G,,,’ and G g+,

=n,(E)/[1-n,(E)] is the 6,-resonance propagator. The
functions w,( p:E) and TI,.(E) are defined by expressions
(18) and (19) of'!!. As E— E, a pole is possessed by only
the first term of formula (3); as a result we get for

G 2

tdn

62, =203/ )3/2"2M0) w i\/i s B :
tdn V2 ol 2K' t » (4)

myl

where ¥, = (dnl/dE)E=Et =0.0350 MeV-'.

The values of the vertex w,,(p; E,) at imaginary p can
be calculated with the aid of relation (18) of!!, using the
values of the vertices w,, and w,, (w,, is the vertex of the
transition 6, = @* +n) for positive p, which were obtained
earlier in the solution of the eigenvalue problem.? The
functions wy, (p; E,) and w,,(p; E,) calculated in this man-
ner are shown in the figure. At the point p=4/3/2«
(k=0.532 F-') we have w,,(iV3/2«; E,)=2.11 F*/2,
whence G,,2=1.92 F. We note that in our method we
do not use an analytic approximation of the wave
functions.

Calculations previously performed with the aid of the
integral-equation method yielded for G,,,? the values of
1.0 F (the Reid potential’®), 1,9 F (the Malflier-Tjon
potential'®), and 0.1 F (the Darevich-Green potential’®').
According to'®™, the value of G,,,? for the Yamaguchi
potential is 1.4-1.6 F and differs from that calculated in
the present paper. Actually, however,these values were
obtained not from the numerical solution obtained in!®!
for the Faddeev equations, but from an approximate ex-
pression for the wave function of tritium, the analytic
structure of which corresponds to the use of a separable
potential, and all but one of the parameters of which are
fitted to the experimental characteristics of °H.!®) We
note in this connection that it follows from!®! that G, x 2

td'n
#0(=0.01 F) for the case when the singlet deutron d* is
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regarded as a bound !S; state of np with zero binding
energy, whereas it is easy to see that in such a deter-
mination of &* one should have G, ,2=0.

The correct expression for G, can be obtained by
taking the residue in the total three-particle amplitude at
the pole with respect to the variable paired energy of the
np system on the second sheet. As a result, we obtain
again expression (4), in which we must make the substi-
tutions o, —~a, =-0.0415 F*', g—B,=1.165 F', and
wo,(iV3/2k; E,) —~ w,, (i3 /2k*; E,), where @, is the wave
number of the singlet deuteron, B, is the reciprocal
radius of the singlet Yamaguchi potential, and «*
=vV4m(- o /m - E,)/3=0.594 F!, Using the value
w,,(iV3/2k*; E,) =2.72 F*/2, we obtain G,2=~-0.380 F.
We can also introduce a modified constant G, 2
=mGy,*,?/2a,, which differs from zero also when a,

— 0. The quantities G? appear in natural fashion, for
example, when the reactions (¢,N) are described within
the framework of the two-nucleon transfer mechanism,
or if we use the zero-radius or effective-radius approx-
imation instead of the pole approximation for the inter-
action amplitude of the transferred pair of nucleons. We
then obtain for 6, * 2 the value 21,8 F; for comparison
we indicate that G2, = (m/22,)G,, 2=19.7F.

We emphasize that the quantity G,,x,? is connected by
a relation of the type (1) with the amplitude of the nd*
scattering in the state 25,,,, T=1/2, If we substitute in
(1) instead of an amplitude with a definite total isospin
an amplitude with definite projections of the scattered
particles, then the value of G, % and 5, 4" given above
should be multiplied by (10'/2-1/2;1/2-1/2)?=1/3.
For the {—~ d+n vertex, these two definitions coincide,
since the corresponding isospin factor is equal to
unity.

The value G,,,>=1.92 F obtained in the present paper
exceeds the phenomenological values of G,,,2 obtained
from an analysis of the reactions (¢,d) and (d,t) and
from the reactions with the lightest nuclei within the
framework of the peripherial model"®’ (G,,2=1.11
+0.05 F) and the distorted-wave method!4/(1,0410.19 F),
and also from the dispersion relations for the amplitude
of forward elastic nd scattering!*! (1.00+£0.12 F). This
circumstance is not surprising, since the potential used
by us is not realistic and is chosen only for the sake of
simplicity in the illustration of the method. We note in
this connection that if we use in formula (4) not ¥ =0.532
F-!, which corresponds to E,=-11.03 MeV, but «
=0.449 F-!, which corresponds to the experimental value
E,=-8.48 MeV, then we obtain G,,?=1.10 F, but this
procedure is hardly legitimate.
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