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We consider nonlinear combination (Raman) interaction of first sound with second sound in liquid
helium II—parametric excitation of second sound by an exciting first-sound wave. An expression is
obtained for the threshold intensity of the first sound, at which excitation the second-sound waves
set in. The possibility of experimentally observing the phenomenon is discussed.

It is shown that propagation of first or second sound
in liquid helium 11 can produce nonlinear phenomena due
formally to nonlinear terms of the hydrodynamics equa-
tions. Osborne''? observed the formation of second-
sound shock waves, the theory of which was given inm,
and subsequently developed more accurately and in
greater detail by Khalatnikov, 31 who considered also
first-sound shock waves. The formation of shock waves
is in essence self-action of waves and is not connected
with nonlinear mixing of waves of different nature. In
this paper we consider a different type of nonlinear in-
teraction, namely nonlinear combination interaction of
waves of first and second sound. It is well known that at
sufficiently low intensities the ordinary and second
sound propagate practically independently of each other,
This is due, first, to-the anomalously small coefficient
of thermal expansion of liquid helium 11, so that the two
types of waves are not mixed in the linear approxima-
tion, and second, to the fact that the nonlinearity of the
medium does not come into play at relatively wave
intensities. At sufficiently high intensities, manifesta-
tions of nonlinear interactions can appear, one of which
is the considered parametric excitation of second sound
by first sound.

We start from the equations of the hydrodynamics of a
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superfluid liquid, “*? which can be transform
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Here p is the pressure, T the temperature, s the
entropy, p the density, p, and p; the normal and super-
fluid densities, V, and V, the velocities of the normal
and superfluid motions, and ¢; and c, the velocities of
first and second sound. We assume that ordinary sound
of high intensity propagates in the medium and excites
parametrically, owing to the nonlinearity of the medium,
two second-sound waves that draw energy from the ex-
citing wave. To describe this process mathematically,
we seek a solution of (1) in the form of a sum of three
waves: an exciting first-sound wave 3[Pexpi(k,- r — wgl)
+c. c. ] and two excited second-sound waves %[Tl’2
Xexpi(ky, 5+ T~ wy,yt) +c.c. ] (T, is the backward wave).
We assume here that the following equations, which
correspond to the energy and momentum conservation
laws, are satisfied:

Wy =0 YO, k, =k +k,. . (2)

We assume that the waves propagate along one straight
line. Since ¢y> ¢, (say at T=1, 5°K), it follows that (2)
is satisfied under the condition

[ =a)2=——2—m°

3 "o = kl - k2 .

Taking the damping of the waves into account, we ob-
tain the following system of equations for the interact-
ing-wave amplitudes that vary slowly with the distance:

dr
e 2T -ipPTr =0
dx 2

]
<
—

W
~

dT a .
T g AR

dP+ y
Ti—x_ —Z—P—HSTIT2

1
[—]

Here a and y are the wave-amplitude damping factors,
Pey 1 ap,
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The boundary conditions are Ty(0)= Ty, 75()=0, and
P(0) = P, where [ is the interaction length (T;¢#0 be-
cause of scattering by the fluctuations). From (3) we ob-
tain the following expression for the threshold intensity
of the exciting sound, at which excitation of temperature
waves begins:

1 1 2
D = | P, .
2pc, thr 2P°1432

349 JETP Lett,, Vol. 19, No. 11, June 5, 1974

We obtain a numerical estimate for the threshold at
T=1.5°K. We assume

w, = 2:27-105sec™}, 4 = 0.1cm™, ¢, =2.3-10% cm/sec;
e, = 2:10%cm/sec,

p=0.lag/em? p -=09p, p =01p;

9p,/3p is estimated by using data on the pressure depen-
dences of the velocity c,, %7 of the entropy, and of the
specific heat (see, e.g., .

We obtain:

- 2
e =310 W/em®.

The solution of the system (3) (with damping
disregarded)

~ g ~
lepuk\/_s‘ snlK +ﬁpo(x—l),k],
T, =Pk Ecn[K+ﬁPo(x—l),Z], (4)
5

P=P dn(K +BP(x~1),kl

Here sn, cn, and dn are elliptic functions, K(E) is a
complete elliptic integral of the first kind, and & is
determined from the equation

s . ~
20y 2 ~Fen(K-1BP LK), ®)
P0 B

which in the case of sufficiently large amplification of
the wave reduces to the form

18P, = K(k). (6)

An investigation of the solution (4) and (6) shows that
the intensity of the excited temperature waves becomes
comparable with the initial intensity I, of first sound at
a distance ! on the order of several centimeters at
I,=0.1 W/cm?,

The described interaction can be used to obtain sec-
ond sound of high frequency.

We are grateful to V. P, Peshkov and K. N. Zinov’eva
for a very useful discussion,
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