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We consider the influencefof"discrete surface states [1 - 4] on the im-
pedance of a semi-infinite sample y > 0 in an external magnetic field parallel
to the surface, }l %. The character of such states in superconductors was

analyzed in detail in [4]. We choose the natural gauge A, = Ax(y), Ay = A =

0, and then the projectionsof the momenta of the excitations on the x and 2z
axes (PX and PZ) are conserved, while the energy spectrum € = en(PX, PZ) has

the form shown in Fig. 1 [4]. The magnetic fileld H, at which the gap in the
energy spectrum vanishes is Ha v ®,/650, where ®¢ is the flux quantum, § is
the depth of penetration, and &g 1s the coherence length.

Fig. 1. Form of the energy
spectrum in a superconductor:
a - H<H;, b - H>Hy. The
quasidiscrete levels are shown
dashed.




The possibility of transitions of the resonant and of the threshold type
is obvious already from the form of the energy spectrum, and this leads to
corresponding singularities in the surface impedance. Their dependence on the
magnitude of the magnetic field, on the temperature, and on the frequeney is
quite unique. Without stopping to describe the calculations, we present the

res

final result for the resonant increment AZ of the surface impedance:
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— for a cylindrical Fermi surface
O(x) = fVx

Inx for an arbitrary Fermi surface

nF(e) is the Fermi distribution function. Formula (1) was obtained under the
assumption that the resonant frequency Won = (em - en)/h ~ w, where w is the

frequency of the wave incident on the superconductor; for the same reason as in
cyclotron resonance [5], the line broadening and the shift of the resonant
frequency as the result of the smearing of the levels can be described by a
relaxation time 1. The relative amplitude of the resonance is of the order of

a/6L for a spherical Fermi surface and of the order of (a/éL)/wmnT for a

cylindrical surface. On the other hand, the derivative of the resonant part of
the impedance surface, as usual, is larger by a factor W T than the resonant
increment itself.

The line shape in formula (1) determines the dependence of the energy
spectrum on one (for a cylindrical Fermi surface) or two (for an arbitrary
Fermi surface) continuous parameters Px‘and PZ. For the same reason, the fre-

quency of transition from the n-th to the m-th level, which corresponds to the
extremal density of states taking part in the resonance, and which is extremal
in PX and PZ, will be resonant. If m, n >> 1 and m - n << m, n, then the

classical orbits corresponding to the levels between which the transition takes
place are period in coordinate space, i.e., ;x = 0vxdt = 0, v, 2 0. The ap-
preciable dependence on (m - n) in formula (1) makes it possible apparently to
observe experimentally only transitions between nearest levels.’

The temperature dependence of the amplitude of the resonance is determined
by the difference of the occupation numbers of the corresponding levels
[nF(en) - nF(Em)]. Therefore at T = 0 the resonance is possible only if €n > 0

and en < 0, corresponding to a transition from a filled level to an empty one.

This means that the resonant transitions are possible when there are already
discrete levels under the Fermi boundary (e = 0), i.e., (see Fig. 1), at H >
H,. If the temperature differs from zero, then some of the states with ener-
gies_em > 0 are filled with respect to temperature (and accordingly some of

the states with €, < 0 are empty), and resonance is realized also at H < Ha.

The temperature dependence enters not only in the occupation factor but, in
accordance with [6], also in the value of the gap, in the depth of penetration,
and by the same token in the resonant frequencies. The exponent of H/Hy de-
pends on the distribution of the magnetic field, but it is always of the order
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Fig. 2. Phase trajectories corresponding to the following
levels: a - discrete, b - quasi-discrete. The level width
is determined by the probability of the transition from the
state 1 to the state 2, and is exponentially small in the
quasiclassical approach.

Fig. 3. Dependence of the derivative of the impedance H(4&Z/dH)
on the magnetic field. The monotonic part of the curve 1s
only tentative.

of unity, and the presented value 2/3 is obtained in the case of exponential
damping of the field, and is more readily an estimate.

Besides the transition between the states of the discrete spectrum, reso-
nance occurs also in transitions from gquasidiscrete states to discrete ones
(Figs. 1 and 2). Everything stated above can be extended without change also

to this case, except that the corresponding resonant frequencies are wTe® > 2a.
Another type of singularity is connected with threshold effects, which
are due to transitions from states of the discrete spectrum to the continuous
spectrum. The picture changes when w or H changes, and for concreteness we
shall consider the change with frequency. With increasing frequency w(hw < 24),
starting at a certain instant of “time, such a transition becomes first allowed,
and then the number of the transitions increases periodically with w with in-
creasing w. At the same time, the surface impedance also increases. At zero
temperature, so long as H < H», the amplitudes of the increments are exponen-
tially small. The point is that the wave functions that enter in the matrix
elements that determines the transition probabilities are not covered in
similar fashion by the trajectories of Fig. 2. If H > Ha, then the impedance
increment is of the same order as the resonance amplitude. A" T # 0, owing to
the temperature filling of the levels, just as in the case of resonance, the
increments occurring in the magnetic fields H < H, are likewise not small.

From the character of the energy spectrum it is seen that there are alto-
gether “WN(N - 1)/2 different resonant singularities and “N threshold singu-
Tarities, with H the number of discrete levels (N (H/Hc)l/"(csL/a)l/2 if

H < H, and N v /(H/Hc)(GL/a) if H > Hz.

Tn conclusion we note that the experimentally observed singularities of
the surface lmpedance in superconductors [7, 8] have apparently a threshold
character. To observe the resonance 1t would be necessary to decrease the fre-
guency of the external field 1n [7, 8], since the employed frequencles corre-
spond to large m - n in (1).
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