One possibility of producing large-current ion beams

B. I. Ivanov

(Submitted May 29, 1974) ZhETF Pis. Red. 20, 170-173 (August 5, 1974)

The possibility is discussed of producing large-current ion beams by evaporating and desorbing ions from a metal surface under the influence of a strong electric field.

Strong-current ion beams (SIB) with currents $\sim 10^2 - 10^3$ A have been obtained in^[1-3]. A number of pulsed strong-current ion beams were suggested, with currents $\sim 10^3 - 10^6$ A and energies $\sim 10^8 - 10^9$ eV. [4-6]

The purpose of this paper is to elucidate one more possibility of obtaining SIB, by evaporation and desorption of ions from a metal surface under the influence of a strong ($^{\sim}10^8-10^9$ V/cm) electric field. Questions concerning evaporation and desorption by a field are dealt with at microcurrent levels ($I^{\sim}10^{-10}-10^{-7}$ A) in field emission ion microscopy. ^[7]

We consider the limiting ion current density (j_{lim}) ob-

tained by field evaporation in the space-charge-limited regime. The field needed for evaporation can be produced near a needle-point electrode. Since the ion-current density (j) is maximal near the surface of the needle point, we estimate $j_{\rm lim}$ by using the model of a planar diode.

We obtain the simultaneous solution of the Poisson equation

$$\frac{d^2\phi}{dx^2} = \frac{\mu j}{\sqrt{\phi}} \quad , \tag{1}$$

where

$$\mu = 4\pi\sqrt{\frac{m}{2eZ}}$$
, $j = \text{const}(x)$, $\phi = V_o - V$, $V_o = V|_{x=o}$

with boundary conditions

$$\phi(0) = 0$$
, $\phi(x) = \phi$, $\frac{d\phi}{dx}(0) = \Sigma_0$

and of the equation that describes evaporation by a field (in the approximation of thermally activated process):

$$j = j_o \exp f(E_o)$$
, $f(E_o) = \frac{Ze}{kT} x_c (E_o - E_c) - \frac{\alpha}{2kT} (E_o^2 - E_c^2)$, (2)

where V is the potential, m and eZ are the mass and charge of the ion, E_0 is the field intensity on the anode surface, E_c is the critical value of E_0 , x_c is the critical distance from the anode surface, T is the surface temperature, $\alpha \equiv \alpha_a - \alpha_i$ and $\alpha_a(\alpha_i)$ is the polarizability of the atom (ion).

The solution (1) can be represented in the form of a cubic equation in $\sqrt{\phi}$, from which we get

$$\phi = \frac{E_0 x}{16g} \left[1 + 2\cos\left(\frac{4\pi}{3} + \frac{1}{3} \arccos G\right) \right]^2 \quad \text{at } g < \frac{1}{3} ,$$

$$\phi = \frac{E_0 x}{16g} \left(1 + 2 \cosh \frac{1}{3} \operatorname{arc} \cosh G \right)^2 \quad \text{at } g > \frac{1}{3} ,$$
(3)

where

$$g = \mu^2 j^2 x E_0^{-3} \exp 2f(E_0)$$
, $G = 1 - 24g + 72g^2$.

A plot of $\phi(g)$ is shown in Fig. a.

Expressions (2) and (3) determine the current-voltage characteristic (CVC) of an ion field-emission strong-current diode in the field-evaporation regime. It can be constructed by specifying the values of E_0 as a parameter in the interval

$$E_c \leq E_o \leq E_B = a^{-1} \left[Zex_c - (Z^2e^2x_c^2 - 2aA_z)^{\frac{1}{2}} \right]$$

 $[E_B]$ is the upper limit of the applicability of (2), and A_Z is the energy difference between the ionic state at $x=x_c$

and the atomic state at $x_0 d_c$ in the case when $E_0 = 0$], and by obtaining j and from (2) and (3).

In the limiting cases we obtain: at

$$E_o = E_c$$
, $g << 1$ $\phi = E_o x (1 + \frac{4}{3} \sqrt{g})$;

and at

$$E_o = E_B$$
. $g \sim 1$, $G >> 1$ $(j \sim 10^6 \text{ to } 10^7 \text{ A/cm}^2)$

$$j_{1\text{im}} = \frac{4\phi^{3/2}}{9\mu x^2} (1 - \frac{27x^2 E_0^2}{16\phi^2}) \approx \frac{4\phi^{3/2}}{9\mu x^2}$$
 ("three-halves" law).

For a point with radius r_0 we have

$$E_{\cdot o} = \frac{U}{\kappa r_{o}}, \quad \kappa = \frac{1}{2} \ln \frac{2D}{r_{o}}, \quad x \sim r_{o}, \quad \phi \sim \frac{U}{\kappa},$$

$$j_{1 \text{im}} \sim \frac{4}{9\pi r_{o}^{2}} \left(\frac{2eZ}{m}\right)^{1/2} \left(\frac{U}{\kappa}\right)^{3/2}, \quad l_{1 \text{im}} \sim \pi r_{o}^{2} j_{1 \text{im}},$$
(4)

where U is the applied potential difference and D is the distance between the cathode and the anode.

At *U* (pulsed) $\approx 10^7$ V, $E_0 \approx 7 \times 10^8$ V/cm, $r_0 \approx 5 \times 10^{-3}$ cm, and $\kappa = 3$ we have $j_{1im} \sim 10^7 \sqrt{Z/A} (A/cm^2)$ and I_{1im} $\sim 10^3 \sqrt{Z/A}$ (amp) (A is the atomic weight of the ion). We see from these estimates that the proposed method for obtaining SIB can be of sufficient interest. Figure b shows the CVC calculated from formulas (2) and (3) (using the experimental data of $^{[7]}$ in the region $g \ll 1$) for a tungsten emitter (W³⁺ ions, $\phi = U/\kappa$, $r_0 = x = 5$ $\times 10^{-8}$ cm, T = 77 °K, $E_c = 5.7 \times 10^8$ V/cm, $j_0 = 4.8 \times 10^{-6}$ A/cm^2 , $x_c = 0.55 \text{ Å}$, $a = 3.44 \text{ Å}^3$, $A_z = 5.67 \text{ eV}$, and E_B = 6.75 \times 10⁸ V/cm). It should be noted that in^[7], at small values of the voltage and current ($U \approx 10^4$ V, $I \sim 10^{-7}$ A, $r_0 \sim 10^{-5}$ cm) they observed an appreciable rate of field evaporation of W^{3+} , viz., $K \sim 10^7$ atomic layers per second (reaching 109 layers/sec for W4+). The spacecharge effects were still small in this case ($g \ll 1$).

It follows from (4) that to obtain currents $\sim 10^5-10^6$ A it is necessary to use an appreciable number of points, $N\sim 10^3-10^4$. If the distance between the point anode and the flat cathode is $D\gg r_0$, then the limiting current is determined by the "three-halves" law for a flat diode. At $U\approx 10^7$ V, $D\approx 3$ cm, and a cathode area $\sim 10^4$ cm² we get $I\sim 10^6$ $\sqrt{Z/A}$ (amp).

The foregoing estimates are suitable both for evaporation of the point material and for field desorption of atoms specially deposited on the point surface (e.g., D_2 , Li, and others). The total desorbed-ion current is $I_s \sim 10^{-4} \ nZ \ \pi r_0^2 N \tau^{-1}$ ampere, where n is the number of deposited atomic layers, and τ is the desorption time. At $n \sim 10^2$, $\tau \sim 10^{-8}$ sec, $r_0 \approx 5 \times 10^{-3}$ cm and $N \sim 10^4$ we have $I_s \sim 10^6 Z$ amp.

Let us examine certain questions that concern the stability of the emitters. 1) At $j \sim 10^6$ A/cm² and $\tau \sim 10^{-7}$ sec we can neglect the Joule heating of the points. 2) The attainable number of "shots" without changing points is $W \sim 10^3 Z r_0 (j\tau)^{-1}$; at $r_0 \approx 5 \times 10^{-3}$ cm, $j \sim 10^6$ A/cm², and

B.I. Ivanov

73

²A. I. Morozov, A. Ya. Kislov, I. P. Zubkov, *ibid*. 7, 224 For the point to be stable it suffices to limit the voltage-(1968) [7, 172 (1968)]. pulse duration to $\tau < \tau^* = l/s$, where l is the height of the ³S. Gravbill and J. Uglum, J. Appl. Phys. **41**, 236 (1970). point and s is the speed of sound in the metal $(\tau^* \sim 10^{-7})$ ⁴A. A. Kolomenskii and V. P. Sarantsev. Proc. 3rd All-Union sec at $l \approx 5 \times 10^{-2}$ cm). 4) The damage to the points by the Conf. on Accelerators (in Russian), M., 1, 107 (1973). ⁵F. Winterberg, Phys. Rev. 174, 212 (1968). secondary-emission current from the cathode, and the ⁶R. N. Sudan and R. V. Lovelas, Phys. Rev. Lett. 31, 1174 breakdown of the diode gap, can be limited by applying (1973): M. L. Sloan and W. E. Drummond, ibid. 31, 1234 a transverse magnetic field. (1973).⁷E. W. Muller and T. T. Tzong, Field Ion Microscopy, In conclusion, I thank Ya. B. Fainberg, V.I. Kurilko, Elsevier, 1969; T.T. Tzong and E.W. Muller, Phys. Stat. and I. M. Mikhailovskii for interest in the work and for

Lett. 6, 61 (1967)].

Sol. 1. 513 (1970).

¹A, A. Plyutto et al., ZhETF Pis. Red. 6, 540 (1967) [JETP

 $\tau \sim 10^{-7}$ sec we have $W \sim 10^2$. 3) The mechanical stress

a discussion of the results.

produced by the electric field is $\sigma \sim E_0^2/8\pi \sim 10^3 \text{ kgf/mm}^2$.