Development of instability and loss of symmetry following
isentropic compression of a spherical drop

S. I. Anisimov and N. A. Inogamov

L. D. Landau Institute of Theoretical Physics, USSR Academy of Sciences

(Submitted June 17, 1974)
ZhETF Pis. Red. 20, 174-176 (August 5, 1974)

We consider the dynamics of isentropic compression of a drop with an inhomogeneous initial density
distribution under the influence of an external pressure that is constant over the surface of the drop.
It is shown that the spherical drop shape is unstable and that the spherical symmetry is lost in the

course of compression.

In connection with the problem of laser-induced
thermonuclear fusion, many authors have calculated
the compression and heating of spherical targets that
are symmetrically irradiated by laser pulses of
specially programmed form. To study the compression
dynamics and to choose the optimal laser-pulse wave-
form, use was made of both numerical methods!=4 and
of an analytic approach based on particular solutions of
the gas dynamics equations. 4! In either case, only
motions having spherical symmetry were investigated
with a sufficient degree of thoroughness. Simple quali-
tative considerations indicate that such motions are un-
stable; so far, however, no systematic investigations
were made of laser compression with allowance for the
instabilities that disturb the spherical symmetry.

We have investigated the nonlinear development of the
perturbations following the compression of a drop by an
external pressure applied to its surface, i.e., we dis~
regarded the external “corona,” which was replaced by
the pressure field. The instabilities of the corona can
only make matters worse. This compression process
seemed to be a reasonable model for the description of
the behavior of a dense core of a laser target during the
course of the irradiation. A spherically symmetrical
variant of this model was considered in connection with
problems of laser-induced thermonuclear fusion in{%!,
We consider the more general case of drops with ellip-
soidal shapes, and use the results ofl”!, where the
problem was solved of the expansion, in vacuum, of a
gas cloud having no spherical symmetry. The motion of
interest to us can be obtained as a result of the time
reversal of the flow considered in'"!, This time-re-
versed flow is unstable, and the limiting shape of the
drop differs from spherical more the higher the degree
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of compression. The solution obtained below is exact.
It assumes neither slowness of the process nor con-
stancy of the pressure in the drop.

Proceeding to solution, we consider the class of mo-
tions of a compressible medium described by an affine
coordinate transformation v, = F,,(t)a, (r, are the Euler
coordinates and a, the Lagrangian coordinates of the
liquid particle; i, £=1,2,3). This class includes de-
formation sand rotations of an arbitrary triaxial
ellipsoid.'8®! The motions considered in!**' 3ls0 belong
to this class and reduce to a simple scale transforma-
tion »=aF. To demonstrate the instability of such
symmetrical motions, it suffices to consider pure de-
formation in the absence of rotation. In this case the
transformation matrix is diagonal, F,,=R;5,. The sys-
tem of gas dynamics equations for such flows can be
reduced to a system of ordinary differential equations
for the components of the vector R,(t)

. aU
R, +— =0; U=-c(RRR J- c>0 )
dR;

[in the derivation of (1) it was assumed that the com-
pressed matter has a power-law adiabat with exponent
y=5/3].

In classical! mechanics, the system (1) describes the
falling of a particle on a center in an asymmetrical
potential field. An analysis of the solution of the system
(1) becomes easier if one uses the energy integral and
the additional integral obtained in!"!:

R;R; =2Et? +A4¢ +B.
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(A,B, and E are integration constants). An investigation
shows that the fastest compression takes place along the
axis corresponding to the smallest initial radius R,(0)
(we shall designate this axis by the index 1). After a
finite time ¢, the ellipsoid “collapses” completely, i.e.,
R,(t,) vanishes while R, and R, remain finite. The
velocity component along the axis 1 increases without
limit as ¢£--£,. The solution can be formally continued
beyond the collapse point, if we consider the reflection
from the plane R, =0. The figure shows the solution of
the problem in the case of compression of a spheroid
(R,=R,, 6=tan™*[R,/R,vZ]). The value §,=sin"*(1/V3)
corresponds to spherically-symmetrical compression.
Let the initial deviation of the drop shape from spherical
be small, 16(0) — 6, =A,<< 1, Simple calculation shows
that upon compression the deviation from sphericity
increases like

A=Ao<l—%o)—a, @)

where {, is the positive root of the expression 2E#® + At
+ B and o =1/2. Introducing the average degree of com-
pression n, equal to the ratio of the initial volume of
the drop to the final one, we can rewrite (2) in the form

" —

A=A,0B; B- V2 os.
3

Thus, isentropic compression increases the deviation
from spherical shape by a factor V7.

We note that the obtained solution corresponds in
essence to the nonlinear stage of development of a
Taylor instability in a compressible medium for a
particular form of the initial perturbation, with a wave-
length on the order of the radius of the compressible
drop. It is understandable that the amplitude of such a
perturbation should increase appreciably within a time
on the order of the total compression time {,. For per-
turbation with a smaller wavelength the growth time de-
creases in proportion to V'x. It is natural to expect,
however, that the fastest growing short-wave perturba-
tions in the considered situation will be suppressed as a
result of the smearing of the boundary between the dense
core and the corona, so that the actual character of the
deviation from spherical symmetry upon compression
will correspond in general outlines to the considered
model.

13, Nuckolls, L. Wood, A. Thiessen, and G. Zimmerman,
Preprint UCRL-74116, 1972,

2J.W. Shearer and J.J. Duderstadt, Nucl. Fusion 13, 401
(1973).

3J.8. Clarke, H,N. Fischer, and R.J. Mason, Phys. Rev,
Lett. 30, 89 (1973).

‘R,E. Kidder, Nuc. Fusion 14, 53 (1974).

N, V. Smitrenko and S. P, Kurdyumov, Preprint, Inst. Appl.
Mech, USSR Acad. of Sciences, No. 16, 1972,

%R, Kidder, Preprint UCRL-74040, 1972,

’S.1. Anisimov and Yu. A, Lysikov, Prikl. mat, mekh, 34,
926 (1970).

8L.V. Ovsyannikov, Dokl. Akad. Nauk SSSR 111, 47 (1957).
%J.F. Dyson, J. Math, Mech, 18, 81 (1968).



