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A procedure is proposed for finding the parameters of the collective Hamiltonian. The methods
developed are applied to an analysis of the model with variable moment of inertia, which describes
with sufficient accuracy the properties of the fundamental excitation band of atomic nuclei in the

transition region.

In the investigation of the collective motions of the
nucleus, namely vibrations and rotations, extensive
use is being made of phenomenological models based
on the introduction of collective Hamiltonians with pa-
rameters taken as a rule directly from experiment.
The foremost problem encountered in the microscopic
calculation of these parameters is that of introducing
collective variables that describe the considered class
of excitations. Its solution is trivial at an interaction
between particles U(1,2)=x(1)Q,(2) [@(#) is an operator

_of any one of the multipole moments of the system]. In
this case the collective parameter is @ itself, and the
entire problem is solved in two stages™ 2 first one
finds the energy of the system at a fixed value @, and
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then small oscillations relative to € are taken into ac-
count. To construct E(Q) one seeks the unconditional
extremum of the functional H'=H + VQ and the Lagrange
multiplier v is defined in such a way that () =Q. The
term ¥@ can be regarded as a weak external field. We
then have in the harmonic approximation

l/z A A
E@Q) - E(0) =3 P(Q,w=0)=--l—2/2(009~(0)6), (1
0-0Q, =vP@, w-1). (2

Here P is the polarization operator, G is the Green’s
function of the particle, and ¥ is the vertex part, the
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equation for which is®®!?

Yw)=v, +UT(v,)C, (3)

where V| is the external field. Obviously, in the case
when the irreducible interaction four-point diagram in
the particle-hole channel is % (1, 2, 3, 4) = xQ(1)
=xkQ(1)Q(2) 5(1,3) 8(2, 4), the integral term in (3) is
proportional to Q(») regardless of the form of the ex-
ternal field Vy(r). It is this which makes it possible to
determine uniquely the collective parameter & =Q(7)
in a system with multipole interaction.

It follows from {2) and (3) that

2 2

a a
E(Q) - E(0) = Co +Bo— > (@)
== p1 =0 -2 p? =0
Co=-P Q. w=0), By=- Twz) Q. w=0). (5)
w=o

The validity of (5) can be easily verified using as an
example the analytically-solvable problem of a single
j-level.t? Even in this model one can discern clearly
the general principle used in the introduction of collec-
tive variables: it is necessary to introduce them in such
a way as to describe the effective field completely by a
minimum number of coliective parameters. To simplify
the manipulations we shall assume in the general case
that the block U is potential: ¥ (1,2, 3, 4)
= ¥(1,2)5(1,3) 6(2, 4). Then the effective field 7 (r, ")
~8(r - ') depends only on one argument, namely 7, and
it can be expanded in the eigenfields of the system,
which are the eigenfunctions x,(#) of the kernel UGC™!

XX, = UGG X,,. (6)

The fields X,(») do not change their form in the
medium: if V(r) =x,(r), then in accordance with (3) and
(8) we have 7 (x,) =x.(v)/(1-2,). When U (1,2)
~Q,(1)Q,(2) there is only one eigenfield X(») =Q(#), but
in a real case their number is infinite. In a stable sys-
tem all A, <1, The value A, =1 is critical. Any pertur-
bation ¥, ~x (») becomes infinitely amplified in the
medium, and the system changes its state. ¥ V;and
X, are orthogonal, but other near-critical fields x2.(»),
for which (1=2%,) <1 and (V%) =v!,, exist in the
system, then 7 (#)=v2.x2.(#)/(1=2%,) + small incre-
ments. We see that in this case there is duplicated the
situation of a system with multiple interaction forces—
the effective field ¥ (#) has a universal form 7 ()
~x%.(#), and the external field contributes to the answer
only the numerical parameter »%,. Then, in analogy with
the preceding, we can introduce the collective-variable
operator

a= f§(r) X5 (r) gir)d®r. M

Formulas (5) for C and B take the form

- dK° -
Ca == A:,)/(XZ,XE\'), Ha = (xgr (d_w—z) X:,)/X:r x?;r)z (8)
w =~
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where we have introduced the notation K%(w)

=[G(e +w/2)Gle —w/2)de/2mi and 2. =K°(w =0} x2,.
The oscillation frequency w,=(C/B)'/? given by formula
(8) coincides in the adiabatic limit (w, < ws,,) with the
frequency obtained by direct calculation from the equa-
tion for the transition amplitude, 1

The near-critical eigenfields x%.(») always exist in
systems with spontaneous symmetry violation, when the
Hamiltonian H commutes with a certain operator R,
while the mass operator ¥~ does not. The components of
¥ that do not commute with R satisfy the following rela-
tion, 13+81 which is in essence a generalization of the
Ward identity to include the case of symmetry violation

[3, Rl=UK°(w=0){3 RI. 9

It follows from (9) that in such systems the critical
field is x,=(2, R]. Choosing for a liquid drop R=5, we
obtain x,=23%(»)/37, and A, =1 (the frequency of the
dipole excitation of the center of gravity of the system
is w; =0). It can be shown that owing to the condition

(9) there exists not one but an entire spectrum of surface
oscillations of a quantum drop, analogous to the ordinary
capillary waves. ") The methods of the theory of finite
Fermi systems'®! make it possible to calculate with the
aid of (8) and (9) the coefficients C; and B, for various
mutlipolarities L. It turns out that at L ~1 the quan-
tities C;, and B, differ significantly from the classical
values customarily employed in the liquid-drop model.
Thus, far from the closed shells, the quadrupole co-
efficient B, turns out to be much larger than the hydro-
dynamic coefficient By =MA/2, and the rigidity C,, to
the contrary, is smaller than Ci, (This behavior of C
and B is due to quasiparticle transitions in the unfilled
shells™), At a certain number of particles, C, can re-
verse sign, making it necessary to take into account the
anharmonic terms:

C Dp* .
E=E° +—2ﬁ2+— +Bﬁ2+Eﬂscos3y----
2 4

The coefficients D and E can be calculated on the basis
of the Ward identity (9), in analogy with the determina-
tion of the scattering amplitude of a photon with small
momentum K in qunatum electrodynamics with the aid
of the usual Ward identity. The terms containing 3 to
an odd power are as a rule small. % If it is recalled
that B,/B:>1 far from magic numbers, then we can ad-
vance the hypothesis that it is probably necessary to
resort to the hydrodynamic Bohr model™!? for the
description of many properties of nuclei in the transi-
tion region, since the main disparity between this model
and experiment, namely the smallness of the hydro-
dynamic moment of inertia J=3B,3% disappears. If we
assume also that the nuclei are axially symmetrical and
that the mass coefficient B, depends little on 8, then to
find the spectrum of the principal rotational band it is
necessary to minimize the functional

cB* npt
N R
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which can be easily transformed into

Ir+1) K
% +'2—(."In)2,

(10)
where
(10

The Hamiltonian (10) is the Hamiltonian of the model
with variable moment of inertia, [2+1%] which describes
successfully the spectrum of the fundamental excitation
band of nuclei far from magic. It is seen from (10) that
for spherical nuclei (C, >0) the moment of inertia J, of
the ground state is negative, and for deformed nuclei
Jy>0(C,<0), as established in!3), It follows from (10)
that K increases quite rapidly as the magic numbers
are approached (the mass parameter B, decreases
rapidly). This tendency is confirmed by the experimen-
tal data (e.g., for isotopes of Ge and Os™2)), In the
model with variable moment of inertia one obtains also
a relation between the matrix element @ of the quadru-
pole transition between the ground and first 2* state,
Quz=Fk[(J, +J,) /2113, where k is constant within 15—20%
for all nuclei. A hydrodynamic approach based on formu-
la (10) yields the close ratio Qg = 2J%/{(3J, ~ J;). Of
course, the essentially classical description with the aid
of (10) is quite crude. Quantum corrections will be in-
vestigated in a separate paper.

In conclusion the author is deeply grateful to B. T.
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work.
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