Universality of inclusive rapidity distributions

A. K. Likhoded and A. N. Tolstenkov

Institute of High Energy Physics, USSR Academy of Sciences (Submitted August 1, 1974)

ZhETF Pis. Red. 20, No. 7, 490-494 (October 5, 1974)

It is shown that all the distributions $E(d^3\sigma/d^3p)$ for the inclusive reactions $a+b\to c+X$ in the rapidity region $Y_{lab} \ll \ln(\sqrt{s}/m_p)$ are described by a single function of the rapidity Y_{lab} accurate to within a shift $Y_{lab} \to Y_{lab} + \text{const.}$

We have shown earlier^[1] that the transverse scaling observed in the measurement of large transverse momenta p > 2 at ISR energies^[2] takes place in all probability at low energies and small transverse momenta.

The use of the Mueller-Regge representation for the inclusive cross section a+b-c+X in the central region with allowance for the transverse scaling has led to the following expression for the cross section

$$E \frac{d^3 \sigma}{d^3 p} = \phi(m_L) \psi_1(\alpha_1 u) \psi_2(\alpha_2 v), \tag{1}$$

where

$$\psi_1(0) = \psi_2(0) = 1; \quad u = (z e^y)^{1/2}; \quad v = (z e^{-y})^{1/2}; \quad z = \frac{m_1}{\sqrt{s}}$$

y is the rapidity in the c.m.s. and α_1 and α_2 are connected by simple relations with the total cross sections for the scattering of the particle a by c and for the scattering of b by c. In a small rapidity interval near

 $y \approx 0$ we have $\psi_e(\alpha x) \approx 1 - \alpha x$, and formula (1) corresponds to the two-reggeon representation for the cross section in the central region with allowance for the RR term. [3,4]

One can assume, however, that the regime of the central region can be continuously extended into the region of large y, i.e., the region $x=2p_L/\sqrt{s}\approx 0.5$. Favoring the latter is, e.g., the growth of $\langle p_i\rangle$ up to $x\approx 0.5$, which is characteristic of small x near x=0. Naturally, in such a continuation we cannot confine ourselves only to the first terms of the expansion in the representation for the ψ_i , which generally speaking are experimental functions of their arguments. Let us examine the consequences of such a hypothesis within the framework of the representation (1).

We carry out a coordinate transformation $y_{1ab} = y_{max} - y$, corresponding to a transition into the laboratory system of coordinates, where $y_{max} \ll \ln(\sqrt{s}/m_p)$. In this case, Eq. (1) takes the form

FIG. 1.

$$E \frac{d^3 \sigma}{d^3 p} = \phi(m_L) \psi_1(a_1 \sqrt{\frac{m_L}{m_p}} e^{-y_{lab}/2} \psi_2 \left(a_2 \sqrt{\frac{m_L m_p}{s}} e^{y_{lab}/2} \right). \tag{2}$$

It follows from (2) that ψ_1 leads to a scaling expression, and ψ_2 determines the degree of violation of the scaling. At high energies and small $y_{lab} \ll \ln(\sqrt{s}/m)$, the dependence of the spectrum on y_{lab} is determined by the function $\psi_1[(\alpha\sqrt{m_1/m_p})\exp(-y_{1ab}/2)]$, and this function is the envelope for the spectra at lower energies. We note furthermore that the difference in the sort of the registered particle c is determined by the pre-exponential factor $\alpha \sqrt{m_1/m_b}$. This means that the envelope should be the same for all particles, accurate to within a shift $y_0 = 2 \ln \alpha \sqrt{m_{\perp}/m_{\odot}}$ and a common normalization factor $\phi(m_i)$.

Figure 1 shows the experimental data for the reactions $pp \rightarrow c + X$ $(c = \pi^{\pm}, K^{\pm}, \overline{p})$ for different energies, starting with $\sqrt{s} = 6.8$ GeV and ending with $\sqrt{s} = 53$

FIG. 2.

GeV. [5] In Fig. 2, the same data are reduced by a suitable shift $y_0 = 2 \ln \alpha \sqrt{m_{\perp}/m_{p}}$ and by multiplication by $\phi(m)$ to a single curve.

Thus, accurate to within a certain function $\phi(m)$ and a parameter α , all the distributions of $E(d^3\sigma/d^3p)$ for the reactions $pp \rightarrow c + X$ are described by a single function of y_{1ab} , the shift being given by the formula

$$y_o = \ln \frac{m_{\perp}}{m_{p}} + 2 \ln a = \ln m_{\perp} + C$$
.

This dependence of the shift of y_0 on m_{\perp} is demonstrated in Fig. 3 for the reaction $pp \rightarrow \gamma + X$. It is interesting that the y-quantum distribution is described by the same function of y_{1ab} as the initial π^0 mesons whose decay has produced the γ quanta. This allowance for the decay leads only to a redefinition of the constant α in the argument of ψ_i .

In conclusion, the authors thank V.V. Anisovich, S.S. Gershtein, and V.A. Petrov for useful discussions and interest in the work.

¹A. K. Likhoded and A. N. Tolstenkov, ZhETF Pis. Red. 20, 433 (1974) [JETP Lett. 20, (1974)].

²F.W. Büsser et al., Phys. Lett. 46B, 471 (1974).

³A. I. Likhoded and A. N. Tolstenkov, IHEP Preprint STF

^{74-51,} Serpukhoy, 1974.

⁴M. N. Kobrinskii, A. K. Likhoded, and A. N. Tolstenkov, IHEP Preprint STF 74-28, Serpukhov, 1974.

⁵D.R.O. Morrison, CERN D.Ph. 11/Phys. 73-46, 1973, where detailed references to the experimental papers can be found.