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It is shown that the overlap of filaments of transition elements leads to singularities in the electronic
density of states, and these singularities account for the anomalous properties of these compounds.

In the universally accepted theory!'! of the properties
of compounds such as Nb,Sn and V,5i, the Fermi level
is assumed to be close to the bottom of one of the empty
d bands with large (one-dimensional) density of states.
This choice is accidental. The author has noted'?! that
if the electron bands do not cross, then from the point
of view of the occupational numbers the Fermi level
must pass through the point X. The singularities of the
spatial symmetry then ensures a large Fermi surface;
the absence of the usual 7° dependences from the tem-
perature dependence of the resistance (see®® and™’) is
strong evidence that s-electrons do not take part in the
conductivity of these compounds.
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The theory''’ leads to temperature increments to the
elastic moduli, in the form

Cj=4+BiaT. (1)

What is surprising, however, is that slow variations
with temperature are observed in experiment all the
way to T~ T, <100°K, when the interacting-filament
approximation can hardly be valid. In addition, although
the experimental data on the susceptibility'®! of V,Si are
plotted in the form (1), it is difficult to understand, in
light of the selection rules,!!! the large change of the
susceptibility.
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A general expression for the energy spectrum of the
electrons in the vicinity of the point X is'"’

1/2
Ga=cpi+pl)lvlpl+e'2p2-pl)i . (2)

Here ¢ and ¢’ are small to the extent that the interaction
between the filaments is small. The order of magnitude
c/a® =T* (a is the lattice constant) characterizes tem-
peratures to which formulas!'! are valid. We see, how-
ever, that (2) implies a fine structure of the state den-
sity, with a scale T* (dp,/de and the areas of the Fermi
surface near the boundary of the Brillouin zone depend
on €). Confining ourselves to transitions between the
nearest filaments, we obtain the energy spectrum at the
boundary of the zone:

71,2 = sin’¢ + sin?y ¢ | w: + (sin? ¢ - sin?y)2}1/2 | 2"

where we have introduced the dimensionless variables

€= 2(v/a)AE; (2, )= (p 8,p,0); 7 =2 Aa, (3)
and the quantity
A=2(Ba/v)? 31

contains the square of the ratio of the “exchange inte-
gral” B to the width of the zone. Thus, the scale of

T* is ~10?°K {see below). From the dispersion law (2’)
we can easily obtain an expression for the density of
states in terms of elliptic integrals. Thus, at ¥ <0 we
have

vie) /v(0)= (4/a®)E(k)K(k);, k®=2/2-7C. 4)
Here v(0) is the volume density of states for a flat spec-
trum. For one face of the cube and for one spin we

have

v(0)=1/2nva?, (5)

At x=f—~0and x=€-2-0, Eq. (4) has a logarithmic
singularity

2 32
vie) = v(0)— In (4')

72 |x

It can be shown that v(€) is symmetrical with respect
to the substitution € — 2 —€, Therefore a strictly stoichi-
ometric composition corresponds to the choice of the
chemical potential at the point i=1. Since T*~107 eV,
doping by 1% or a fraction of a percent shifts the Fermi
level appreciably. We assume that samples that undergo
a structure transition correspond to the Fermi level {i
near the singularity (4') (. —0, as @ —~2).

We present the results. For the temperature-depen-
dent increment to the paramagnetic susceptibility we
obtain (T <« T*):
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~
€

P 2 v 64yT*
x(f)—Xﬂ—zln T— (6)
n

For the electronic component of the specific heat ¢, we
have

2 167
c'(T) ZCEO(T)—r:Zln-—T (7)

c,o and x, are the electronic specific heat and the para-
magnetic susceptibility in the case of a planar disper-
sion law (c and ¢’ =0 in (2)).

Similar logarithmic relations result from the elec-
tronic contribution to the elastic moduli. For a filament
along the z axis, the electron spectrum depends on the
strains:

- sin¢ + sin?y + dye . * { nf + (sin’® - sin®y + dfe .~ (yy))'zl /2,
where d, and d, are the components of the deformation
potential. We present an expression for the contribution
made to the elastic energy by one filament, normalized
to separate the logarithmic term In(&/7*), from the
energy region @ > e> T* (cf. 1),

(4 2 321 24?2 327+
(n—;-‘ + const + - In—— fe - ‘yy)2 4+ =2 In (222 (8)

g T n2d¥ T

The values ¢g*v =27T* determine the characteristic
scale of the phonon dispersion w(g). Determining a/»
=27N(0)/3 from (5), we obtain in Nb,Sn £* =ag*/7~0.1
-0.2, in accordance with the results of!®!,

Finally, the singularity in the Cooper channel ac-
quires a doubly-logarithmic character

~ ~r *,
m o 1, T
&, 1n7 = £y ln—T—* + —;2 In -T- s (9)

The terms coming from the remote regions in (8) and
(9) play the role of renormalizations that increase the
effective coupling constant, but the connection between
the latter and the nonrenormalized constants is ex-
pressed by a system of parquet equations. '”! The non~
renormalized interactions themselves are, generally
speaking, of the order of unity and more, since the
Fermi surface reaches the boundaries of the Brillouin
zone. The fact that the electrons pertain to the d band
also increases appreciably the dimensionless deforma-
tion potential. In the calculations'®! for V,Ga, the band
of the structure considered above was obtained numeri-
cally (o band); the calculation accuracy (2 mRy in the
band structure and ~1 eV in the relative position of the
bands) does not contradict our picture. From the split-
ting of the terms on the edge of the cube (AE,,

=V)/2 AE;) we obtain x=1/80 and T* =~300°K,

The state density in the ¢ band'®’ is smaller by a
factor 5—8 than that obtained from calorimetric mea-
surements. The effective mass, however, increases
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strongly when the interactions are taken into account,
and this effect should evidently decrease also the value
of T*. There are still no appropriate calculations.

We note in conclusion that the logarithmic relations
in (6)—(9) are sensitive to the position of u (i.e., to
doping and strains) and to scattering effects, in agree-
ment with the experimental situation.
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