Isothermal domains in quasi-one-dimensional superconductors
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It is shown that the usual generalization of the Ginzburg-Landau equations to conclude the
nonstationary case leads directly to the possible existence of domain boundaries of the
superconducting and normal phases in a homogeneous quasi-one-dimensional superconductor. The
current that must flow through the conductor for such a boundary to be in equilibrium is somewhat
smaller than the critical pair-breaking current. Thus, equilibrium between the current-induced domains
in the superconductor can exist also without the thermal effect discussed by Votkov and Kogan.

1. As shown by experiments!!! performed with long
and narrow (width =¢£) strips of thin (thick < £) super-
conducting films, the restoration of the superconducting
state in such quasi-one-dimensional samples with in-
creasing current through the samples does not proceed
in the manner predicted in the theoretical papers. '?!
Namely, the appearance of a superconducting (S) phase
occurs not at very small currents J through the con-
ductor, but at values of J less than but comparable with
the critical pair-breaking current J,. The voltage on
the sample decreases from the normal value JR, to
zero at a practically constant value of the current J
=dJ,<J,. It is natural to attribute such a picture to the
propagation of S-phase domains from the superconduct-
ing electrodes towards the core of the sample, if it is
known that stationary S-N walls of such domains can
exist at J=dJ.

It was shown in'®! that the stability of such a boundary
at J <J, can be ensured by the propagation of heat gen-
erated by the current in the N phase. However, accord-
ing to the statement of the authors of'!!, the sample
heating in their experiments was quite small.

The purpose of the present article is to report that
the existence of a stationary S-N boundary in a quasi-
one-dimensional superconductor at a current J=J,<J,
follows directly from the usual/®*! equations for the
isothermal case.

2. The usual one-dimensional nonstationary Ginzburg-
Landau equations?! for the order parameter y=4/4,
and for the total electric-field potential u can be ex-
pressed in the form
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where x is the coordinate along the conductor, normal-
ized to £(T), and u is the ratio of the order-parameter
relaxation time ¢, to the current relaxation time ¢;. For
the “dirty limit” we have x =12 in the case of paramag-
netic impurities and u = 7*/14£(3) =5.79 for nonmagnetic
impurities, The time is normalized to ¢;. The critical
current J, in our normalization is equal to v4/27
=0.385. The functions #(x) and u(x), which describe a
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boundary located far enough away (> £) from neighbor-

ing boundaries, should satisfy the system (1) with the

boundary conditions
Pg (=) =g, Wl4e) 0,

' 2)

dp

B =0, — )=,

where ¥, is the larger positive root of the equation‘
pra -y =1, (3)

The value of J, should be determined in this case
from the conditions of zero velocity of the boundary:
(3/2¢)=0.*1 The position of the boundary on a filament
is of course indeterminate in this case, so that it can be
fixed by imposing an additional condition, say au/ox(0)
=-J/2,

3. Since it turns out that the length of the stationary
S-N boundary is of the order of unity (£), all the terms
are significant in the right-hand sides of (1), and an
analytic expression can be obtained only for the
asymptotic values as x —~ <, Therefore Egs, (1) with
boundary conditions (2) were solved with a computer by
the usual difference method for concrete values of the
parameters « and J. Among the advantages of computer
solution in this case we can include the fact that it is
possible not only to find the shape of the stationary
boundary #(x), u(x), but to verify directly the stability of
this solution, since the computer in fact simulates the
process (1).

The figure shows the domain-boundary shape calcu-
lated in this manner for x=>5.79; it turns out that J;
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Plots of ¢ and of the normal current component (J, =—3u /8x
against the coordinate x along the superconductor at the value
of the current (J=Jy) at which the S-N boundary is immobile.
%=5.79, Jy~0.335, ¥;~0.92, $,~0.67,
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~0, 335. The influence of the change of the coefficient
# on the value of J is still to be determined, but it is
easy to show that when u tends to infinity, J, tends to
zero like u'/?,

4, From the data given in the second reference of'!!
(Fig. 7) for a tin film it follows that at temperatures
close to critical the values of J,/J, range from 0.72
at T/T,=0,95to 0.55 at T/T,=0.9 (0.87 according to
the theory). It can be assumed that the deviation of J,/
J, from the calculated value is due either to the inevita-
ble influence of the heat during the decrease of T'?! or
to the influence of anomalous terms which are not taken
into account in (1) and lead to an effective increase of
t, and u, 'S

5. It is easy to understand the physical cause of the
existence of a stationary S-N boundary. As is well
known, for currents smaller than J (¢,>V2/3), a
homogeneous (3 /9x=0) superconducting state appears
if the initial value of | ¢! is smaller than ¢,, where ,
is the smaller positive root of (3), and settles at the
equilibrium level ¥, in the opposite case. Therefore the
boundaries are at equilibrium when the suppression of
the order parameter by the current at small values of
¢| in the N domain is balanced by the tendency of | !
to the equilibrium level in the S domain.

6. If the current is not equal to J,, the boundary
propagates with velocity v and becomes slightly de-
formed as it moves. If v is measured in the direction
of the S phase, then v is a monotonically increasing
function of the difference J ~J,, It is easily understood
that v~ -« asJ—~0and v~ += as J—~J_,. At currents
near J, one can introduce a “viscosity coefficient”

dv !
7’7:(—(17)]:] ’ (4)

o

which turns out to be close to 0,7 at u=5,179.

7. As already mentioned, the results explain natural-
1y the form of the current-voltage characteristics of the
samples investigated in"!,

Moreover, we consider it possible to explain, in
terms of the § and N domains, also the steplike struc-
ture of the current-voltage characteristics of other
quasi-one-dimensional objects, such as whisker
crystals, ¢! To be sure, within the framework of Egs.
(1) it is impossible to obtain periodic solutions capable
of explaining the domain structure of such objects.'’ It
turns out, however, that allowance for the two-dimen-
sional character of the sample, even in first-order ap-

-proximation, leads to the appearance of repulsion be-

tween neighboring N domains, which stabilizes the
periodic domain structure and goes over, with further
increase of the sample width, to the usual repulsion be-
tween two neighboring rows of vortices,

Thus, there is hope for explaining many observed
effects in quasi-one-dimensional superconductors in
terms of the motion and interaction of current-induced
domains of the normal and superconducting phases.

DThe solutions proposed in'”! do not in fact satisfy these
equations.
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