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We report new nonlinear phenomena revealed by numerical experiments on the resonant interaction
of two waves. The results explain many phenomena observed in experiments on the frequency
doubling of high-power radiation.

1. We report in this article new nonlinear wave harmonic generation of light beams have revealed for
phenomena that are produced when two diffracted waves the first time the phenomena of mutual focusing and
interact resonantly. Numerical experiments on second- coupled waveguide propagation of beams in a medium
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FIG. 1. Mutual focusing of beams behind a nonlinear layer.
The plots represent the intensities S; , of the fundamental
radiation and of the second harmonic on the z axis, and the
power Py(z): D;=0.02, y=15, A=0, A,(, 0)=exp(—2),

with quadratic nonlinearity, in contrast to the known
phenomenon of self-focusing and waveguide propagation
in media with cubic nonlinearity. The efficiency of
high-power frequency doublers is limited by the energy
transfer that develops as a consequence of diffraction-
induced randomization of the phases of the beams.

The results of numerical experiments explain many
phenomena observed in experiments on frequency
doubling of high-power laser radiation, such as the
formation of a ring structure of Gaussian beams'?! and
breakdown of crystals following harmonic generation, ©*!
as being due to development of mutual focusing in the
crystal; the low efficiencies!?! are attributed to backward
transfer of energy near the beam axis.

2. The interaction of diffracting beams of the first and
second harmonic will be described in the quasioptical
approximation by the system of equations!!+4!

a4 _
2D A4 = - iyAr A e=iBe 1
dz

a4 .

~=? 4 iDAA, =~ iyd? eiBr (2)
dz

where A; are the normalized amplitudes of the beams,
the intensities being S, = IA,IZ; 2z is measured along the
length L of the crystal, 0<z<1, A= (g, - 2k,)L is the
normalized mismatch of the phase velocities, D,=L/
2k,a%, a is the transverse dimension of the beam, y is
the coefficient of nonlinear coupling, and A, is the
Laplace operator in the plane perpendicular to the z
axis,

The system (1)—(2) has integrals of motion I, =P,
+P,, P;=[[S,dxdy is the conservation law of the total
beam energy, and a phase asynchronism integral I,
= [[2D,1V, A 12+ D, V, A1 2= V2| A,l2 - y(A2A}
+A¥2A,)]dx dy.
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A numerical solution of the system (1)—(2) was ob-
tained for cylindrically symmetrical beams with initial
Gaussian distribution

2
A‘(r_o)zaexpl——z(l—iﬁ)‘ , Ayfr.0)=10 (3)
a

within a cylinder » <R at A,(R, 2)=A,(R,2)=0, Con-
servative difference schemes were used for the calcula-
tion. ! The value of R was chosen to be large enough

(R > a) to be able to disregard the influence of the side
boundary. The calculations were carried out up to z
=2, in order to be able to trace the behavior of the
waves after emergence from the crystal at 2> 1,

3. Allowance for the diffraction in the standard fre-
quency-doubling problem leads to qualitatively new
effects. As is well known, it follows from the theory of
plane waves that 100% of the fundamental radiation
energy can be converted into the second harmonic in the
case of exact phase matching (A=0), The numerical
experiments performed with A =0 have shown, how-
ever, that at a sufficiently short nonlinear interaction
length (L, ~y™), the energy exchange between bounded
beams acquires an entirely different character. The
results of the numerical calculations are shown in Figs,
1 and 2, We see that energy is returned by the second
harmonic to the fundamental wave, This transfer first
starts on the beam axis, and then spreads over an
ever-increasing region; the efficiency of the doubler is
then decreased, The reasons for the backward energy
transfer is the diffraction collapse of the phases of the
beams, For the characteristic energy-transfer lengths
we can propose the empirical formulas

2
B =yl ln—25 . zP:y'lln-—y— , (4)
1 1
which should be compared with the formula for the
transfer length in the case of plane waves with phase
difference A= 056!
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FIG. 2. Mutual focusing of waves in the case of a beam of
fundamental radiation focused at 2=0.5. S, , are the intensi-
ties on the z axis, P,(2) is the second harmonic power; D,
=1.43, y=5, A=-3.2,
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z quadratic medium from the outside (see Fig. 3). If the
phase asynchronism integral I, is negative, then it can
be shown that the maximum of the amplitudes of the
beams is bounded from below, max|A4;! = |L,1/1,, so
that the breakup of the field into two noninteracting
beams becomes impossible, and the beams must propa-
gate in the form of coupled waveguides, which oscillate
in the general case. Sufficiently strongly focused or
diverging beams incident on a quadratic medium have a
positive integral I, and may not enter in the mutual-
capture regime, For Gaussian beams with plane phase
fronts and comparable powers, the condition of mutual
capture means comparability of the diffraction-spread-
ing length R, ~D7' with the nonlinear -interaction length
L~y (yDi*3 1). The phases of the beams at the en-
trance should then satisfy the relation |2¢, - ¢,1 <n/2,

Stationary waveguide propagation corresponds to

FIG. 3. id ti fb i drati . .
G Waveguide propagation of beams in a quacratic beams with constant amplitude profile

medium: a—schematic representation of coupled waveguides at
frequencies w and 2w. The dashed lines show the diffraction r
divergence of Gaussian beams in a linear medium over the A, =yt I B (%, ;>e_’ 7:] r-27 ~A . (6)
diffraction-spreading distance R,; b—natural modes of station- ’
ary two-dimensional waveguide [4;(z, x) = B;(x) exp(—iT;z] at . :
Ar;yo ! ! gul 1% T eRPIT L Substituting (6) in (1) and (2) we obtain equations for the

natural modes:

AB. =B (1-8), 7
ip =y ln% . (5) 17 1 2 (7)

It is seen from the comparison that for the diffracting A

A - TS, oL T
\B, - 4<1 '2T)82 —2p%, ¥y T, Da FovEDTy  (8)
beams the role of A is assumed by the diffusion coeffi- !

cient D, In the case of two-dimensional beams, the system
The nonlinear interaction of bounded diffracting (1)—(8) is a Hamiltonian system with an energy integral

beams changes also the phase in the beam cross

section. Of unusual interest is the fact that these Ho=4(B7)?  (B)) - 4{“ . (1 _3}_) B2 - ”fBz}' (9)

changes are such that mutual focusing of the fundamen- R

tal radiation and of the harmonic takes place both in-

side the nonlinear layer and behind it, This is clearly Solutions bounded at infinity (x =+ ) correspond to
seen from the beam-intensity plots of Figs. 1 and 2, H=0. The numerical solution of the system (7)—(8) at
Figure 1 shows mutual focusing of beams after emerg- A=0 is shown in Fig. 3b. Here P,=4.8D}y"a"*, P,
ing from the crystal, while Fig. 2 shows mutual =2.76D}y%a™, If T,=24/3 and T,=A/3, then there
focusing for the focused fundamental-radiation beam. exists a degenerat.:e que with B, = (3/2V2) cosh2(x/2)
In a linear medium, the intensity of the fundamental and B,=V2 B,, With this degeneracy, a mode of cylin-
beam at the focus z=0.5 would exceed the initial value drical beams was obtained numerically; here P;=(9/

by 10 times, and in the case of harmonic generation the 8)D7%a"* and P,=2P,.

total intensity exceeds the initial value by 40 times, It 5, Thus, the critical power of the produced wave-
is precisely this circumstance, in our opinion, which guides of the fundamental and second harmonics is,
can explain the experimentally observed!®! breakdown of apart from a numerical factor,
crystals in synchronous generation of optical
harmonics. o b

4, The change in the phase fronts during the course For ~ yla? ’ (10)
of the'interaction can lead not only to mutual focusing
of the waves, but, if the boundary conditions are suit- For typical crystals with x =10-2 cgs esu and for beams
ably chosen, also to waveguide. propagation of two with a=0,1 mm and ,=0.5 u, we have relatively low
beams at frequencies w and 2w. It must be emphasized powers P_ ~100 W, which is readily attainable in
that we are dealing here with focusing and waveguide experiments,

propagation in the medium with only quadratic non-
linearity, In this sense, the regime in question differs
in principle from the known phenomenon of self-focusing
and waveguide propagation in media with cubic
nonlinearity,

We note in conclusion that mutual-focusing effects
become more strongly manifest in the case of nonde-
generate three-frequency interactions.
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