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Invariant wave functions are introduced for the description of nuclei at relativistic
nucleon momenta. It is shown that deviation from spherical symmetry appears in
the wave functions at small distances.

PACS numbers: 21.60.Jz

The formalism of invariant wave functions (WF), which describe nuclei cor-
rectly at nucleon momenta on the order of their masses, is presently vital in
nuclear physics. The momentum region ¢ ~m has already been “sounded” ex-
perimentally; thus, the deuteron form factor is known up to ¢2< 6 (GeV/c)2,[2]
In this region, the description of the aggregates of the experimental data with
the aid of nonrelativistic wave functions ¥(q) suitably fitted at ¢ ~m is doomed
to failure, since the very parameterization of the WF can change (and indeed
does change), and does not reduce to a dependence of only one argument—the
relative momentum q. To describe different experiments it would be necessary
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to have different wave functions ¥(g). The problem of finding relativistic WF
was posed and considered in!?! in the coordinate representation.

The purpose of this article is to report results of an investigation of rela-
tivistically-invariant WF needed for the description of nuclei at relativistic
values of the nucleon momenta. These wave functions can be useful also in
composite models of elementary particles. Details will be published in a more
extensive article. Preliminary results were published in the review, (31

A relativistic bound system containing, generally speaking, an indeterminate
number of particles, is described by a state vector &(p). Its expansion in
states with a fixed number of particles is given by

() =X [Ckoennk» Patrk).a’rk)]0>
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where C, are components of the Fock column, and all the momenta lie on the
mass shells: k}=m?, p?=M?, We consider the case of spinless particles, as
well as bound systems with zero total angular momentum.

Under transformations of the Poincaré group, x —~x' =x+8x and 6x;=6;
+ éw,kxk the state vector ¢ (p) is transformed in the following manner ¢>(p)
— &' (p) =06(p) =(1+60)d(p), where 60= i 6€, +(3/2) M;,00;,, while 2, and
Mtk are generators of the Poincaré group. Bearing in mind that Pk transforms
in accord with 24 =01 P, U= P, - 6w;,?;, we obtain

dpp—Ba;p ) =(1 +5u)¢(Ph)' (2)

In the nonrelativistic case, for example, for a two-particle system, Eq. (2)
leads to Galilean invariance of the WF, namely C,(k; — m6v, k, ~ mdv, p
— Mév)=C,y(k;, k,, p). Eliminating k,, we see that the WF depends only on one
argument q=Kk; — (m/M)p. In the relativistic case the generators of the Lorentz
transformations contain an interaction Hamiltonian that changes the number of
particles. Therefore the WF are transformed not only via themselves, but also
via other components. Thus, for a separately taken component C, there is no
group transformation law, this component is not invariant and depends (after
eliminating k,) on two vector arguments separately: C,=C,(k;, p). Some simpli-
fication can be obtained by going over to the light cone (in a system with infinite
momentum) , 1] where the dependence on the modulus of p drops out, but the
dependence on the direction p/ pl,.. remains. Thus, the relativistic WF con-
tain one ‘“excess” variable in comparison with the nonrelativistic ones, and
this variable is the same in all the components of the Fock column. It is of the
form of a three-dimensional unit vector and characterizes the connection be-
tween components that leads to covariance of the state vector.

The noninvariance of the Fock component is an exceedingly inconvenient
property of the theory. Our main task is to impart to the theory an invariant
form that makes it possible to parametrize the WF conveniently and to make
the entire formalism “profitable.” To this end we consider more general WF,
which go over in a particular case to Fock components. Instead of the two-
particle component we introduce
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C =C("l. kzo P, Ar )’ (3)

where A is a 4-vector such that A2=1 and A, >0, T is a scalar parameter, %}
=ki=m?, p?=M?, and the following equality holds:

k,+k,=p +ar,

We shall call the 4-momentum AT the spurion momentum. If 7:=O and Ag=1,
then the parameter 7 can be eliminated: 7= e(k;) +e(ky) ~e(p), and the function
(3) is chosen such as to go over after this to the Fock component C,(k;, k;, P).
All the other components are analogously generalized.

The method of generalizing (3) is not unique. In order for it not to distort the
functional dependence of the WF and, conversely, emphasize it, it is necessary
that the method correspond to a definite dynamic scheme. We introduce the
functions (3) in such a way that they correspond to the three-dimensional field-
theory formulation proposed by Kadyshevski¥, 5] I is convenient for our pur-
poses, in particular, because of the exceeding simplicity of the final result—
the parametrization of the WF. We note also that this formulation is quite
general and is based on an equation of the Tomonaga-Schwinger type, and that
at present there is no alternative whatever.

The transition to the light cone is effected by the substitution A ~w, where w
=(wg, ), wi=0, and w;>0.
We introduce the variables
m Q (k
q]=k1(-)-§Q=kl-—=.;—[f(k1)——ﬁ}?—L ’
vQ? Vo vO©+0,

* %
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where @=p +wT.

It is easily seen that the WF (3) depends only on two independent vector argu-
ments, 4=gq; and n:

C =C(q’ n)o (5)

Under the Lorentz transformation, the vectors q and n experience only rota-
tion, so that the WF is invariant.

The appearance of the variable n corresponds precisely to the dependence on
the direction p/| pl. We note that introduction of the variables q and n solves
automatically the problem of separating the motion of the mass center, in
analogy with the variable q=k—(m/M)p in the nonrelativistic case.
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The variables q and n are connected with the known variables in the a system
with infinite momentum q, and x:

¢~ e~ (@)’

_ (nq) (6)
T _(l «(q) )

According tof®? it is possible to introduce a coordinate space by using the
Shapiro transformation!”! with respect to the variable q. It is Fourier-con-
jugate to the rapidity space.[?! The WF (3) are connected in simple fashion with
the vertex parts T'(2,,k,,p,wT) of the diagram techniquet®

1
C(kl. kz.p. or)s ———T (k,, "z' pPs wr), (D
2r(s - M?)
where s=(k,;+ky)%.

The appearance of a vector n in formula (5) can be interpreted as the onset of
a certain deviation from the sphericity of the WF at short distances, In the
nonrelativistic case the operator U in (2) generates Galilean transformations,
and at g «< m the dependence on n, and with it the nonsphericity, vanishes:
Cle,0) |y~ ¥ (@,

We have thus obtained an invariant formalism of WF that depends on three~
dimensional arguments, have a probabilistic interpretation, and have a repre-
sentation in relativistic coordinate space. It follows from this formalism that
to relativize, say, the WF of the deuteron it is necessary, besides introducing
other components (isobaric or pionic) to change the parametrization of the WF
by introducing in them the additional argument n.

In the case of an arbitrary number of particles, the prescription for the gen-
eralization is the same: ¥,(qq, ..., Qpg) T C(Qy, .00, Gpog, 1)

After this paper was completed, the author learned of a paper sent to press
by M.V, Terent’ev, “Structure of the Wave Functions of Mesons as Bound
States of Relativistic Quarks,” devoted to a study of the WF of a system con-
sisting of only two relativistic particles. In this case the WF depends only on
one argument, q.

I am deeply grateful to 1I.S. Shapiro for suggesting the problem, for fruitful
discussions, and criticism. I am indebted to V, G. Kadyshevskif and M., V.
Terent’ev for useful discussions.
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