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It is shown that at definite relations between the coupling constants the radiative
corrections lead to the absence of symmetry breaking in the Higgs model.
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The question of the influence of radiative corrections on symmetry breaking
in gauge theories has been intensely investigated of late. The first and most
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significant paper in this direction is that of Coleman and Weinberg. ! They,
however, used renormalization conditions that fixed a number of unphysical
parameters at different and furthermore nonequilibrium values of classical
fields. This makes the interpretation of the results of!!} extremely difficult™?
and leads to a number of semiterminological misunderstandings, A similar in-
vestigation undertaken within the framework of standard renormalization pro-
cedure in!?! contained an analysis of only the model of the scalar field A¢?, and
the approximation contained inl*! was insufficient for a study of dynamic effects.

In this paper we use a standard renormalization procedure inthe investigation
of symmetry breaking in the Higgs model that describes the interaction of a
vector field A, and a complex scalar field

1 , . , 2
Le=7(d,4,- 9 A7+ (9 + ig A9, — ig AP+ w0 = My, (1)
After symmetry breaking the field ¢ acquires a ¢c-number part

¢c/ﬁ: ¥ —'—l_— (¢+1’x+¢c) .
v2
where y is an unphysical Goldstone field.

We consider the effective potential V(¢ )4 corresponding to the Lagrangian
(1) with normalization conditions imposed at the point of the minimum of V(¢,)
at ¢ ,=86=p/VA
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The physical meaning of the conditions (2) is that the position of the minimum
of V{e,) at ¢,=0=0 and of its curvature at this point are fixed in at the values
obtained from (1) in the classical approximation,

We consider for simplicity the case A < g2. The contribution of the scalar
particles in the expression for V(¢,) can then be neglected, and standard cal-
culations!®% 5] jead to the effective potential

Al W ¢ ¢.,
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+20%¢2) + V(D).

As follows from!!*5)  the higher orders of perturbation theory can modify signi-
flcantly expression (3) only in the region of asymptotically large ¢ ,~ocexp(1/
£%. We, however, are now interested in the region ¢, < o. In this case it fol-
lows from (3) that at A<3g*/167? the potential V(¢,) acquires a new minimum at
¢.=0. It is easy to verify that the same effective potential is obtained in the
scheme of™] if the parameters g2 and A, which are determined by the conditions
(2), are connected with the corresponding parameters oft!! with the aid of the
equation of the renormalization group. 14,47 1n this sense, our results are equi-
valent to those of Coleman and Weinberg. The study of the massless
electrodynamics
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(azv -0
a¢g ¢c=0 )

and the massive electrodynamics
( v s 0)
a"Scz & =0

(in the terminology of Coleman and Weinberg) reduces to a study of the usual
Higgs model at A=3g%/167% and A <3g*/16x%, respectively, and the minimum at
¢.# 0, which appears dynamically in the scheme of!11, is in our approach the
ordinary “classical” minimum that leads to spontaneous symmetry breaking.

The use of a standard renormalization procedure not only makes obvious the
physical meaning of the results oft!}, but yields also new physical information.
Namely, it follows from (3) that at A <3g%/327? the minimum at ¢,=0 is deeper
than the minimum at ¢,=0. Thus, symmetry breaking occurs in the Higgs
model only if

3g4
(4
3252 )

A D

or, in the language of scalar and vector fields, at
2

2
1622 "4 " 9
We recognize that the constant A defined by the conditions (2) has the meaning
of the parameter p2/o?, but is not equal to the coupling constant Ay; of the
scalar field ¢ on the mass shell. In the tree approximation we have A =%y,

but in the single-loop approximation at m, <<ma4 (i.e., at A<<g? we have

mfﬁ >

I atv
Mm =5 357 g =0
and it follows from (3) that Ay =A+g%/2n%. At the same time, g}, =g%+0(g"
~ g?,
We note that the constant )\ is positive “by definition”: A =u?/¢?, The potential
V(¢ can thus have a minimum at ¢,=o= 0 only if

3'4;
in
Aine ™ 242 ’ (6)

and this minimum, according to (4), is stable (i.e., deeper than the minimum
at ¢,=0) when

19
3202
For a numerical estimate we take g2/4nr ~10% and ma ~10% GeV, just as in
Weinberg’s model. 61 Tt follows then from (6) and (7) that

A >. g?nt . (7)

int

-3
A"n’ > 10 »
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and from (5) it follows that

m¢ > 5 GeV.

On the other hand, if we consider the theory of strong interactions (g> 1, ma
~1 GeV), then we obtain respectively A >10~! and my, >100 MeV.

We note that in theories with V(o) ~ V(0) a first-order phase transition with
reconstruction of the symmetry!? will take place at a rather low temperature
TAT,—~ 0 as V(9)) = V(0), i.e., in our case as Alnt—'19gint/327r2) . This makes
the models with V(o) ~ V(0) nonrelativistic, see, e.g.," . The absence of a
phase transition in stars makes it possible to strengthen the restrictions (4)—
(7). The results of the present paper can be trivially generalized to include
also nonabelian theories, We note that the limitations obtained in this manner
on the constant Ay,; and on the Higgs-meson mass m, are much stronger than
the existing experimental restrictions.

In conclusion, the author thanks D.A. Kirzhnits, I.A, Batalin, B. L.
Voronov, and I. V. Tyutin for interest in the work and for a discussion of the

results.
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