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A kinetic transition accompanied by establishment of long-range order is possible
in a system of parametrically excited spin waves (PESW) in the case of parallel
pumping in ferro- and antiferromagnets when the temperature is lowered or when
the excess above threshold is increased.

PACS numbers: 75.30.Fv

The interaction of spin waves (SW) with a parallel-pumping field is described

by the Hamiltonian
1
H, = Fhoale, to XhRT a0 To.c. ), (1)

in which & is the amplitude of the magnetic pumping field, V, is a coefficient
characterizing the strength of the coupling of the SW with the pump (see™?),
The Hamiltonian (1) is expressed in a “rotating” coordinate system [a,
— explivgt/2a,], wp=wp=ws/2, where w, and wp are the frequencies of the SW
and of the external pump. In the considered classical limit, af and a, have the
meaning of c-number complex amplitudes of the SW,

The Hamiltonian H, is reduced to the standard formt?

H =- “29 PR, + k%ﬁ‘l‘b"*b" . (2)
The decay region of the wave-vector space £ is defined by the condition
l@,1 <h|V]. (3)

The remaining vectors k belong to the nondecay region . The variable p, and
q, are cononical: p, are the generalized momenta and ¢, are the coordinates;
pp=pF and g_,=qf. The complex amplitudes of the SW in the decay region are
linearly connected with the variables p, and q,:

a, =uj’%q, - 7;,-1" @)%k,

uy =i G/ VWD, +idy) /251, s, =Vh2|V,)" - @2 . (4)

In the nondecay region &, the presence of an external pump leads to a renormal-
ization of the complex amplitudes of the SW (a,—b,,, the b, being connected with
the a, by the u, v transformation), and the SW frequency is likewise renormal-
ized in this case:

33, 0 epr o =23, 01 - (]| /3,001 5
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In experiments on parallel pumping we have 21V,| ~v (y is the SW damping),
so that the decay region £ is small in comparison with the nondecay region
[see (3)], and the renormalization (5) is significant in R only at the points k
that are directly adjacent to the decay region §£2. The SW in the nondecay region
can be regarded as being in thermal equilibrium, and the entire aggregate of
these SW, as well as the system of nonmagnon excitations of the crystal, can
be regarded as a thermostat.

The interaction between the PESW and the thermostat will be taken into ac-
count by adding to the equations of motion for a,, in the decay region, the
damping (-2, and the Gaussian random force. * The following Langevin
equations are valid for the variables p, and g,

F."._=_(Yk_3k)Pk té,lt), li,,=—(yk+sk)q,e+l/1k(t) (6)

with the random forces ¢, and ¢.

Since s, increases with increasing % [see (4)], at a definite value of the pump
field amplitude (k=%,) the coefficient v,=v, — s, vanishes at certain points
k (k€ £ ; this value ~#=h, determines the threshold of the parametric reso-
nance., At h>h,, the coefficient v, becomes negative and the unstable modes
by grow exponentially. We note that the coefficient K,=7v,+s, for the modes g,
does not reverse sign on going through the resonance threshold,

The limitation on the growth of the unstable modes p, is the result of the
nonlinear interaction between the SW, Following Zakharov, L’vov, and
Starobinets, 17 we choose as H,,, the four-magnon reduced Hamiltonian

1
H,, = kzk‘h(Ta:akak"ak;+ —2—5":‘1’5./,,“[,’“-1;’)' 7

and for simplicity assume that the coefficients T and S are independent of 2 and
k’. We also assume below that V, and v,, do not depend on k2, and w depends only
on the modulus of the wave vector k.

By starting from the Hamiltonian (7) , we obtain nonlinear equations of mo-
tion for the modes p,—the analog of the Ginzburg—Landau equations with
fluctuating force:

Pr =~ 0 (P)py +4(t),

. ) \ @r+sy  , (8)
Ve=y + §1W(2Twh+5wkl)[pk1{ + ksz——z-ﬁr—lpkl[ lp"zl .

v, Teverses sign on going through the threshold. The coefficient of lp,21 {2 in the
expression for 7, can be both positive and negative. In view of this it is neces-
sary to take into account the next-higher-order term (the last term in the ex~
pression for 7).

By constructing in standard fashion®) from the Langevin equation (8) the cor-
responding Fokker—Planck equation for the distribution function é({pt D) and
solving it in the self-consistent-field approximation, 7 we arrive at the follow-
ing results:

1. At low excess above threshold, when ¥ =(h —h,)/h,<n¢q, the stationary
regime previously investigated in®*! exists; in particular, the correlators 7,
= (aja,) are given by
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2
—k =(0/E£l)), (il) mw /2)[((Dh2 o ) +A§} ,
y

1/2
Af ; K+[—4—K +(m ¢ )2] R, = (20/ﬁmp) ’ (9
kZ|S|
6155_ , voE——ll‘ . (T)b =ao=—2T25k.
21rv° dk | ° °

Expressions (9) are valid in the region lw,—wol <7v, and 9 is the temperature
of the thermostat; for ferromagnets we have £~ (akg, where a is the lattice
constant.

2. At high excesses above threshold, when 1>k > n¢t, the solution is essen-
tially different. The corresponding regime can be described as a superposition
of a “condensate” filling a sphere of zero thickness in k-space, and “above-
condensate” particles, whose distribution is nonsingular. The total distribution
takes the form

Bo= L N B(k|~k)+RL, . =(6/e2),

n
¢ 41rk2
(@, -3,)?
- (ho,/2) | —— A2 (10
2y2

(2T +8§
2=(i°£2)1/2(2x/5062)1/6' 525\/2( s+ )f,-

N, = 2 (2012, & =a(k,)=-2IN, .
(S

The “condensate” corresponds to the “single-particle turbulence” analyzed by
L’vov' using the Wild diagram technique.

3. We present an expression for the absorbed power in the regime (10):

1/3

) (K/ﬁofl)'”“] an

4. The asymptotic form of the correlator glr =) = r)n(r)) — w)? as
Ir -’ makes it possible to determine the correlation radius 7, of the
density fluctuations. 1 For the solutlon (9), 7. increases monotomcally with
increasing «, namely {0 = (vo/v)A and »{V = vo/v)(nog Y2 at h=h,. Inthe
regime (10), the presence of a condensate is reflected in the presence of
long~range order in the density n. The correlation radius due fo the “above-
condensate” particles is

-1/6

s 1/3 K
Te Sleo[ (“"“‘“) y (12)
[Z(ZT +S)} ﬁofl

and decrease with increasing excess above threshold.

28
Q) =(ho,/2)(y/|S 1)(;051)1/2[(%/;051)1/2+(
2T+$
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5. When & increases in the region of excess above threshold « ~z¢f{, a
kinetic transition takes place from the stationary regime (9) to the regime (10),
and is accompanied by precipitation of the “condensate” and establishment of
long-range order. We note that the solution (10) was obtained only in the region
Kk >>mety, so that an analysis of the character of the kinetic transition is outside
the scope of this paper.
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