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The amplitude of the reflection of a soliton by an antisoliton is calculated in the
“sine-Gordon” quantum model. This process is classically forbidden. The potential
of soliton interaction in the nonrelativistic limit is calculated.

PACS numbers: 03.65.Ge

The Lagrangian of the model is
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The solutions of the classical equation are described in™?), The classical scat-
tering of a soliton (S) by an antisoliton (4) in the c.m, s., which is described by
the equation
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tatl%e?1 place without reflection and the quasiclassical (Y~ 0) S-matrix is given
by 3,41
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Here p,(p) is the momentum of S(A). We consider the reflection of S from A in
a quantum system in the quasi-classical limit (as y—0).

The problem of above-barrier reflection in nonrelativistic quantum mechanics
was solved in™3, The “imaginary time” method™? turns out to be effective in
our problem, and we use also the method of complex trajectories in a functional
integral (FI), a method close to that in'®?,

The asymptotic form of the propagation function, describing reflection as ¢’
— and £~~~ is given in the p-representation by a regularized FI%*! (the
region of integration is bounded by constraints and by additional conditions)
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In (3) we have changed over to the ¢c.m.s. The FI in (3) has no stationary-phase
point, but if t’ is shifted to the complex plane, then such a point does appear,
There is a known representation for G(¢’,#) in the form of a FI with £’ and ¢
complex, 1%111 The FI does not depend on the contour that joins ¢’ and ¢ in the
complex time plane, 1121 We choose t' such that there exists a classical tra-
jectory (CT) corresponding to reflection. It turns out that Im¢’=r/m sinh¢_. We
determine the FI (3) along the contour of Fig, a. In this case there exist two
CT(“b” and “c”) that join together the boundary conditions (3), The CT “b” is the
limit of values of (1) on the contour of Fig. b, while the CT “c” is the limit of
values of (1) on the contour of Fig. c. For both CT, the turning takes place at ¢
=ig/2m sinh¢_. Calculating the FI (3) by the stationary-phase method, we
obtain?
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Here s =/ : L{u, ) dt, while the first (second) term is the contribution of the
CT “p” (“¢™. In (4), the action is varied with respect to a value of the CT close
to “b” or “c” at the instant ¢’ and £. In (4), —i and £ are the contributions of the
turning points, The explicit form of 5S(x,# * shows that the determinants (4)
are equal, and we take them outside the curly brackets and disregard them.

The ratio of the contributions of the CT was taken into account by us in the “one-
loop” approximation, and the remainder only in the “tree” approximation, We
continue G(t',#) in ¢’ back to the real axis. The transition from G(’,#) to the

S matrix, just as in quantum mechanics, reduces to replacement of s° by s°!
-s81— 51, Here s¢! and s are the values of the action calculated on the free S
and A, respectively. We ultimately find that the correction to the S matrix (2),
corresponding to reflection, is equal to

. , . . 8x° 87
<plypl|Sip,sp>=-28(p,~p) 8(p_ -p])Dsin—exp —-y—\c#-—dul (5)
Y

202 JETP Lett., Vol. 23, No. 4, 20 February 1976 V.E. Korepin 202




a T
7w
mshe_ >I< L%
l 2mshe._
[0
b (X
msh?_ J iz
J' Zmsheg.
g
c
¥4 -
mshe_ T S
? ] ZmShe_
0

At y=8n/n (n is an integer) there is no reflection and decay of the #th bound
state of the S and A takes place, 11331 thus recalling the behavior of a particle in
a nonrelativistic potential (NP) B/cosh®a»). The absence of reflection confirms
the hypothetical form of the scattering matrix [ of S by A at y=84/251;
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After completing this work, the author has learned of a preprint'®*? dealing
with the reflection of S and A. In["), the S and A are replaced by particles
that interact with an NP, The quantization reduces to a solution of the
Schrédinger equation. The NP was calculated int42 incorrectly, The reflection
coefficient given inm], which is valid at ¢, 0, is not obtained, the author’s
statements notwithstanding, by solving the Schrodinger equation given there.

Let us calculate the NP from the value of the action s§1 on the CT describing
the passage of S and A(1). It obviously gives the correct S matrix (2) as ¢,—0.
Let x,(x) and xl(x’) be the coordinates of S(A4) at the instants £ and t’. As ¢’
— and t— - the form of s{ at ¢,(x. ~x_, x{ —x,, x.—x_, t',t) 0 becomes
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The NP made up of the first two terms in (6), which predominate as ¢,—0,
leads to the Schrodinger equation

2
d? d? 27°m
ia_¢_= —_Z__z—._y__g__—— Y, R=x_+x_, r =x -%x_, (7)
9t B dRT Bm dr ch¥{m
2

which describes correctly, as ¥~ 0 and ¢, 0, the spectrum of the double
solitons!3:131 (2) and (5). Vinciarelly!!4! calculates the NP by using the depen-
dence of (p_~p,) s ON (x_—%,) ¢, along the CT, i.e., actually along s/
8x_—x,), in which the principal nonrelativistic term 87% is lost, and this in-
deed leads to an incorrect coefficient in front of 1/cosh?(m»/2). The CT speci-
fy the type of NP only as » —*; the function exp{—m |71} proposed in%! is in-
distinguishable from 1/cosh*m#/2), We choose (7) because of (5).

The reflection of S and A was pointed out to the author by L, D, Faddeev.
The author is grateful to L, D, Faddeev and M, A, Semenov-Tyan-ShanskiY for
useful discussions.
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