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It is shown that the contribution made to the system energy by the zero-point
oscillations of the order parameter near the phase-transition point determines
essentially the order of the phase transition. For example, in the case of a structure
phase transition, such an oscillation is a soft phonon mode, with which the lattice
instability is connected and which vanishes only at the transition point. This
behavior of the branch of the collective excitations leads to a first-order phase
transition.

PACS numbers: 64.70.Kb, 63.20.Kr

1. It is known that a structural instability takes place in systems whose elec-
tron spectrum e(k) satisfies the condition e(k)=— e(k+q) near the Fermi sur-
face. The symmetry of the restructured lattice is determined by the vectors q.
In the self-consistent-field approximation, the transition turns out to be second
order and is the consequence of the appearance of a soft mode, the oscillation
frequency of which at momenta q vanishes only at the transition point. This
nonanalyticity makes the similarity in the total energy near the transition point
stronger than the singularity in the self-consistent part of the energy (the
Hartree energy). As a resulf, the structural transformation proceeds via a
first-order phase transition., We shall demonstrate this first with the two-band
model with hybridization, which was investigated in'!}, inasmuch as the phase
transition in it can result from a change in the hybridization parameter at 7= 0.

2. We neglect the Coulomb interaction in comparison with the electron-
phonon interaction. Allowance for the Coulomb interaction leads simply to a
renormalization of the effective coupling constant. The Hamiltonian of the sys-
tem can be written in the following form!1l;

H = f[e (k)(a;kalk - a;kazk)'* L@ka:kazk + ce. )
m
° (1)

+g|§q {a;kath(bq* +b_g)+ce l +ho, Thh .
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Here wy is the unrenormalized frequency of the unstable phonon mode, g is the
electron-phonon coupling constant, and p is the matrix element of the momen-
tum operator for the interband transition. The interband term (fi/myp -k=V
will for simplicity be regarded as constant in absolute value |V| and as revers-
ing sign at those momenta k at which the scalar product goes through zero.

Introducing the anomalous electron Green’s function G, =—¢(Taya3,) and the
phonon mean values (J§+b), [!! we obtain at T=0 the following expression for
the order parameter A, which is proportional to the mean value bj+b,,

A=yaZ-17)’, (2)

where
-1
Ao = 2‘F exp ;
aN()E7,

and N(0) is the density of state at the Fermi level. It is seen from (2) that a
phase transition occurs when a change takes place in the value of V or in the
coupling constant g, when 4,2 |VI.

By directly averaging the Hamiltonian (1) we can obtain the following expres-
sion for the change of the energy E_ (in the self-consistent approximation) in the
course of the phase transition:

A2
Ec=_A2+IV|21n6+|V12) . 3)

At small A (A« |V]), i.e., near the phase-transition point, we obtain from
this

c

4
E =~ A/‘Vlzn (4)

i.e., the second derivative of E_ with respect to V| (or with respect to the
volume, since V depends on the volume) experiences a discontinuity, as should
be the case in a second-order phase transition.

At a fixed level of V (including V=0), the discontinuity takes place in the
second derivative of the free energy with respect to temperature.

3. We shall show now that inclusion in the energy of a contribution from the
zero-point oscillations of the collective modes on top of the self-consistent
part (the influence of the quantum oscillations) leads to a first-order phase
transition. In a structural transformation, such oscillations are the phonons of
the ““soft mode.” The change of the free energy in the system is the result of
the electron-phonon interaction can be expressed in terms of the complete
phonon Green’s function D 21

g 3
sr=T[% 2 f <k
o & @ (24)8

where Dy is the Green’s function of the free phonons.

DM (w,. k) [ Dfw,, K) - D, (a, k)1, (5)

Expression (4) contains a sum of the correlation energy and the exchange
energy. It does not contain the Hartree energy [see (3)]. In the high-density
approximation, the polarization operator in the Dyson equation for the D func-
tions expressed in terms of the loop diagrams on the normal and anomalous
electron functions with zero vertices. For low-wave oscillations of the soft
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optical mode we obtain from the pole of the D function

oK) = \/wz(O) +c%k?, (6)
Vi -A
0?(0)c4g*N (0w 0|, 7= l——l———i - (7

L)

Thus, it is seen from (6) and (7) that the frequency w(k) of the mode de-
creases as the transition point is approached, vanishes at k=0 at the transition
point, and begins to increase from zero below the transition point. A similar
behavior is observed also when the temperature is varied. Only at the transi-
tion point this mode becomes acoustic, this being a consequence of the fixation
of the phase of the order parameter, both because of the hybridization term in
(1) and of the electron-phonon interaction.!!! In the jellium model, or in the
case when the periods of the lattice and of the displacement wave are incom-
mensurate, the phase of the order parameter is arbitrary!®! and therefore two
modes appear below the transition point. One behaves in analogy with (7) and
the other is acoustic everywhere below the transition point.

Formula (5) for 6F can be transformed in analogy with plasma theory!*! into

3

dk
5F= |

, *
- [Flog)- Flo,) 1. F(x) = 2— + Tla(l - e=¥T), (8)
(2)

i.e., it reduces to summation, over k, of the difference of the free energies of
harmonic oscillators of the renormalized and nonrenormalized frequencies.

Substituting in (8) at T'= 0 expressions (6) and (7) for w(k) we see readily that
6F, and consequently also the total energy, behaves in the vicinity of the transi-
tion point in nonanalytic manner as a function of n (and consequently also of the
volume) (see the figure). The first derivative of the energy with respect to 7,
which is proportional to the pressure, has a discontinuity at the transition
point, i.e., a first-order transition takes place. Therefore, the result ob-
tained in!%!, namely that the phase transition in the model of the excitonic in-
sulator is of first order if account is taken of the annihilation interaction, is in
fact due to the singular [of the type (6)] behavior of the collective exciton mode.
In the case of phase degeneracy, if a mode of the type (6) is present in addition
to the acoustic mode of the collective excitations (as in the one-dimensional
jellium model®!), the transition is of first order.

FIG. The dashed line represents the
dependence of the free energy on T (or
V1)) in the self-consistent-field ap-
proximation. The solid curve is the
same but with allowance for the contri-
bution from the collective oscillations.
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4. We present now a phenomenological analysis of the influence of the quan-
tum fluctuations of the order parameter near the critical temperature T, on the
type of the phase transition in the general case. We must find the temperature
dependence of the oscillation frequencies, and then use expression (8) for the
free energy. We introduce to this end a Schridinger equation in which the role
of the potential energy is played by the Landau expansion for the free energy. ¢!
At a fixed phase it is possible to choose the order parameter A real. In the
phase-degenerate case both the real and imaginary parts (u and v) of the order
parameter can vary independently. In the limit k=0, the kinetic energy opera-
tor T takes the form 7= (#2/2M)(8%/8A?) in the first case and

4 %2/ 92 92
L A
oM ‘9u? Qu?

in the second case. Here M is the effective mass corresponding to the quantum
motion of the order parameter. At T>T,, the equilibrium value A, of the order
parameter is equal to zero, It is then possible to retain in the Schriddinger
equation for the potential energy the terms quadratic in A [ A? in the first case
and « (?+v?) in the second case, o « T— T,l. In both cases we then obtain the
equations of harmonic oscillators whose oscillation frequencies decrease like
VT =T, when T approaches T, from above,

Similar calculations for T'<T, show that between the case with fixed phase
and the case with degeneracy in phase there are significant differences. In the
former case there exists one oscillation, the frequency of which (at k=0) is
proportional to the equilibrium order parameter, APOC\/TC— T. In the second
case there are two types of oscillations., The frequency of one of them, which
is in phase with A, is proportional to VT,=T. On the other hand the frequency
of the other, which is shifted n/2 in phase, is lower than 7, everywhere and
has zero frequency at k=0,

The presence, in both cases, of oscillations whose frequencies squared are
proportional to |T—T,| near T, lead, in accordance with (8), to the appearance
of a single term proportional to — |T—T,|, in the free energy N. Therefore,
the entropy at the point T, changes jumpwise, i.e., a first-order phase transi-
tion takes place. Owing to the interaction of the fluctuations, this singularity of
T, may turn out to be “smeared out, >’ but the singular term of 6F leads already
in the region of Gaussian fluctuations to violation of the theorem that the
thermodynamic potential is convex, thus ensuring the fact that the transition is
of first order.
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