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The dynamic exponents at the critical points of higher order are determined and
their dependence on the conservation law is investigated.
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Systems with critical points, which are simultaneously critical for several
phases, are presently intensively investigated. It is the number o of these
phases which determine the order of a critical point. At 0>2, the second-order
phase transition curves go over in such points into first-order phase transition
curves. Such a behavior of the curves is possible for the mixture *He—%He, for
metamagnets, and for compressible magnets.!!=*1 A significant change in the
static critical properties has been observed as a function of the number o of
phases near the critical point. A change takes place also in the dimensionality
d, of space starting with which a stable nontrivial solution appears for the re-
normalization group equations for the coupling constants of the fluctuating
fields, %1 Expansion in powers of the deviation €,=d,—d, of the dimensionality
d of the system from d,=20/(0 — 1) makes it possible to calculate the resultant
deviations of the critical exponents from the predictions of the mean~field the-
ory, ™*1 In this paper this approach is generalized for the investigation of the
dynamics at a critical point of arbitrary order. Let the Hamiltonian of the sys-
tem be a Ginzburg-Landau functional
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with a single n-component order parameter $(x), where h(x,#) is the field con-
jugate to it, The dynamic equation can be obtained from the condition that the
rate of the change of the order parameter be proportional to the conjugate ther-
modynamic force. The proportionality coefficient I'j, which sets the time
scale, plays the role of the nonrenormalized kinetic coefficient and depends on
the law governing the conservation of the order parameter. The action of the
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thermal reservoir is taken into account by introducing a random Gaussian force
with spectral intensity 2T";. The gauge invariance of the equation of motion
makes it possible to represent, independently of the number o of the phases,
the correlation function in the dynamic-similarity form

2 - z
6lg, @) =g O flo/o), 0, ~q°, 2
where 7, is the static exponent and z, the dynamic exponent at the critical point,
q is the wave vector, and w is the frequency.

To find the dynamic exponent z,, we write the correlator in the form of the
following expansion

6=(g, w) =Gl (g, ©) + £(3, ©) - £(0, 0), (3)

where Gylg, w)=lg? —iw/T,I! is the nonrenormalized correlator, (g, w) is the
self-energy part, and the subtraction (0, 0) includes all the corrections that
do not depend on the frequency or momentum. The nonrenormalized vertices
in the expansion should be u,,, which leads to the appearance of closed loops
that do not depend on ¢ or w. It is therefore convenient to go over directly to
new vertices u,,, which include these loops (Fig. 1). The second-order cor-
rections, with which the expansion of the self~energy part begins, are then
given by diagrams with 2k — 1 internal lines (Fig. 2). The dynamic fluctuations

Uy
FIG, 1.

lead to replacement of the nonrenormalized vertices by renormalized ones %y
which in principle can depend on the frequency. These satisfy the following
dimensional estimates

<=

FIG. 2.
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from which it follows that for k <o all %,,=0. Comparison of (4) with the ex-
pansion %, in powers of small u,, yields in first order %,, ~€,. Therefore, in
the expression for Z{g, w), accurate to O(e?,), we can confine ourselves to
second-order diagrams with 2 =¢, and for the renormalized coupling constants
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we can use their static values obtained on the basis of, %1 %, =ea(2m)%(20) 1 g3!
x (n) T1=0(v) , where v=(c—1)"! and

(a!)Z(_"z_ + o= 1)1 (20 - 2))!
gg(n) =3 : )
’ (0 =27)1(i!1)*? z + 0] —1).’ 1+0)!
2

It follows therefore that at d=d; the dynamics is described within the frame-
work of the average-field theory, and fluctuation corrections can arise when
d<d,

Let us analyze a number of concrete cases corresponding to different con-
servation laws in the system. Let the order parameter not be conserved, i.e.,
T'y=const, Calculation of the diagrams and allowance for the combinatorial fac-
tors yields as w—0

5.(2) (g=0,0)= iaaqaro'l w o, (6)
where
S -
a,= L d (20-1DT1~200) fdux’ 0™ 5=x"y? 0T L0y

v(rx?d is the incomplete Gamma function

n 1 -1
,,o=2fza(a_.1)zg.r(_{ +o-1) ![(?n)!gf,(n)] .
Comparison of (3) and (6) with formula (2) leads to

za=2+coqa, ¢y=2a,-1, cg> 0. (7)
From this it follows, in particular, that the renormalized kinetic coefficient
Ty~ weXq ~ 4% vanishes as ¢ — 0 at the transition point, We note that at o>2
our results yield the fluctuation corrections in flat models. With increasing o,
their magnitude decreases rapidly. In the limit as n—* we have (2;—2) ~1/n
at even o and (2,— 2) ~const= 0 at odd o. A numerical calculation yields ¢,
=6In(4/3) ~1~0,726, c3~ 0,946, ¢,~ 1,053, and c;~ 1.118, For the usual cri-
tical point (¢=2) our result agrees with that of{1%2,

If the order parameter is a conserved quantity, then I'; ~g¢? and no terms of
the type wg~?lnw appear in € (¢,w). Consequently, in this case we arrive at the
result z;=4 — 1, of the Van Hove theory,

In degenerate systems, precession of the conserved order parameter can
take place. Allowance for this motion makes the Liouville operator non~
Hermitian. The corresponding elaboration of the equations of motion, M7 carried
out for a model with a three-component order parameter, and a subsequent di-
mensional analysis, yield z,=1+d/2, We note that the dynamic exponent does
not depend here on the number of phases surrounding the critical point, as is
apparently characteristic of models with a non-Hermitian Liouville operator,
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