Behavior of the wave function at short distances
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The relative motion of quarks is described in a relativistic coordinate space, the
transition to which is realized with the aid of an expansion of the wave functior
on the Lorentz group. It is shown that inclusion of an additional series of unitar
representations in this expansion leads in natural fashion to a potential that trap:
the quarks.

PACS numbers: 12.40.0d

In recently proposed models, the forces binding the quarks increase with
increasing relative distance, leading to trapping of the quarks inside the par-
ticle and to the impossibility of observing them in the free state,

We have investigated the problem of quark trapping within the framework ¢
the quasi-potential approach, {17 using for this purpose Kadyshevskii’s equa-
tion. I In the quasipotential equations, in contrast to the Bethe-Salpeter equ:
tion, the momenta of all the particles lie on the mass shell, It is therefore
convenient to change over here to the relativistic configuration representatio
(RCR) introduced within the framework of Kadyshevskii'’s approach in B, Tt
RCR differs from the nonrelativistic coordinate representation in that in
this case the Shapiro transformation ! is used in place of the Fourier trans-
formation. The Shapiro transformation is an expansion in the matrix element
of the principal series (PS) of unitary irreducible representations of the
Lorentz group (LG)~the group of motion of the mass-shell hyperboloid p,z, -p
—MZ, and for the wave function of the relative motion of two quarks it takes
the following form, in the notation of &,

- leirM
vo) = [Ep, ¥ drs €0 =(Tn ), atan

Here p is the momentum of the quark in the c.m.s., and p;=—p,=p. It was

proposed in B! to regard the parameter », which determines the eigenvalues
X? of the Casimir operator of the Lorentz group (LG) C= (1/4)MWM”” (M, a
the generators of the group)

’ 1
CEM 1) =X6(p,1); Xl =om 477 (0g7 < =)

as a relativistic generalization of the relative coordinate. In the quasipotenti
equation, written in the RCR, the role of the potentials is played by the form
of the Feynman propagators, Thus, the propagator 1/(p —k)2, which describe
the exchange of a zero-mass gluon, corresponds to the relativistic attractior
potential

Vir) == 1 cthrrk.
4

nr

657 Copyright © 1977 American Institute of Physics



“virtue of (2) and the equality
dF(¢
<r2> = 620 lragy
adt |t=o0 t=
> coordinate 7 describes distances that exceed the Compton wavelength, 2

According to ¥1  a transition to distances shorter than the Compton wave-
wgth, X% <1/M?, can be attained by including in the expansion of the wave
iction a supplementary series (SS) characterxzed by the following values of

> LG Casimir operator C—x2= 1/M?— p%, where 0 =p=1/M, The coordinate
s reckoned from the boundary of the sphere X= l/M2 towards the center,
that the value p=1/M corresponds to the origin X%=0,

The analog of the plane waves of the principal series £ (p,r) for the supple-
:ntary series are the functions &(p, p)=[(py—p - n)/M]-1¥  which can be
'mally obtained from ¢(p,r) by the substitution » —ip. 7] The expansion of
), with allowance for the supplementary series, takes for the states with
0 the form

® sinrM X UM shpM X -
o) =an [ 2R w ) e+ anf 2T (o7 (4)
o rMshX o pMshX

We consider now the analog of the relativistic Coulomb potential at distances
orter than 1/M, Changing over in (3) to the supplementary series by making
> substitution » ~ép, we obtain the potential (see the figure)

1
V(p) =— crgnpl; 0<pglyy, (5)
4np
ich traps the quarks inside a sphere with R%=X?=1/M?, The free Hamil-

1ian operator Hj for the plane waves of the supplementary series is ¢(p,p)
Ept(p,p); 2E,=2M coshy =2VMi+p?;

A 1o w19 LY (6)
=2Mch— ——— + =——gh— —— - ,
° N PR "R PRRPY.
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just as in the case of the principal series, B3] is a differential-difference oper-

ator, The solution of the quasi-potential equation with potential (5)
4 - -
(H, +V(p))‘1‘q(p) =2 ¥ (p) (i

in the region 0 =X2=<1/(2M)?, where cot 7pM <0 and M,y = 2E = 2M cosx takes
the following form for states withI=0:

ctgmrpM

—lx . _ ctgm pM .
Tq'lso(P) =(e~¥sinx)e b"Ppexp[:«: oo ]ZFI(I +pM, 1+1

sinx 2sinx

2; 2ie'i"sinx) .

The function cotrpM in (5) is constant with respect to the operation of the finite
difference differentiation (see ), by virtue of which it can play the role of the
effective coupling constant in (7). The requirement that the solution be regular
at X2=0 (p=1/M) leads to the quantization condition sin2x =x, which determine
two energy levels. One with My;,;=2E,=1.38M, and the other with My;4=2E,
=2M, In the region 1/(2M)?=X%<1/M?, where cotrpM >0 and 2E,=2M coshy
=2M, the wave function is obtained from (7) by the substitution x = —{x. The
requirement of regularity of the point X2=(1/M%(p=0) leads to the condition
2sinhy e =y, which determines one more level with My;,4=2E =2, 98M.

Thus, in a quark-antiquark system situated in the field of the potential (5)
in a state with I=0, there can exist three energy levels or three excited states
of one particle. For example, at a quark mass M, =555 MeV we obtain three
p-meson states: M,=765 MeV, M,,=1100 MeV; and M,.=1645 MeV, which ar(
close to the experimental values of the p-meson masses.

The supplementary-series functions ¢(p,p) are not square-integrable, V]
This makes it necessary to include a regularizing kernel K[(p —%)?] in momen-
tum space in the definition of the scalar products of the wave functions (8) de-
scribing distances shorter than 1/M, that is, (¥, ¥,) = [T (DK ~ &) 214K
x(d*p/p)(d@°k/k(. Questions of normalization of the wave functions (8) and of
the description of the spectrum of the mesons and ¥ particles in our model wit
a quark-trapping potential (5) will be dealt with in a forthcoming article.

The author is deeply grateful to V.G. Kadyshevskii for a useful discussion
of the work.
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