OBSERVATION OF A, MESON

```
Yu. N. Kafiev and V. V. Serebryakov
Mathematics Institute, Siberian Division, USSR Academy of Sciences
Submitted 28 May 1973
ZhETF Pis. Red. 18, No. 3, 187 - 189 (5 August 1973)
```

The problem of the existence of the A_1 meson and its detection in photo- and electroproduction is investigated. The absence of the A_1 meson in photoproduction is discussed and the cross section of its electroproduction is estimated.

Following the 1972 Batavia conference, the situation with the existence of the A_1 meson became exceedingly confused. As is well known, various theoretical approaches, e.g., current algebra or the quark model, call for the existence of a meson with quantum numbers $J^P = 1^+$ and

 $I^{G} = 1^{-}$. Confidence in this increased after the SU(3) partner of A₁, the D meson, was observed [2]. Yet the A₁ meson has not been observed experimentally so far. Attempts were made recently, on the basis of large statistics, to find A₁ in the diffraction production $\pi N \rightarrow A_1 N$. The study of the 3π state by the method of Ascoli [1] in the A region (m_{3 π} = 1000 - 1400 MeV) has shown that the phase of the $p\pi$ state does not go through 90° in the region where the A₁ meson is expected to be (\sim 1070 MeV), and reveals no rapid variation at all, whereas in the region of the A₂ meson one can clearly see a rapid variation of the phase shift, indicating the presence of a resonance. Since the background process, the Deck effect [3], makes a large contribution to $\pi N \rightarrow 3\pi N$ in the A region, the results of [1] signify that if the A₁ meson does exist at all, the cross section for its production is small in comparison with the background. Therefore diffraction production of the A₁ meson is not a suitable method of detecting it [2].

It might seem that the A_1 meson could be observed in photoproduction, since at small values of t the one-pion mechanism leads to its production with a sufficiently large cross section, $\sim 1 \ \mu$ b. In this case the dependence of the production on the phase shift of the $\rho\pi$ state takes, according to Watson's theory [2], the form $e^{i\delta} \sin \delta$ (δ is the phase shift of the elastic $\pi\rho$ scattering), unlike the $e^{i\delta}$ relation that holds in diffraction production. The $e^{i\delta} \sin \delta$ dependence should lead to a much sharper peak in the mass spectrum than in diffraction production, as is observed experimentally in the production of ρ , B, ω , etc. However, even in the photoproduction of the 3π state there is no enhancement whatever in the mass spectrum in the region of the A_1 meson [4]. This fact can be explained within the framework of a model based on the proportionality of the Pomeranchuk and f-meson trajectories, and the connection between the f meson and the conserved (tensor) current [5], a connection that explains successfully many features of diffraction production. In this model, the amplitude of the diffraction dissociation of the pion into an A_1 meson is proportional to $(t/m_A^2)g_{f\pi A_1}$, where t is the nucleon transfer, thus explaining the small cross section of A_1 production in comparison with the Deck background. On the other hand, the exchange ρ -f degeneracy in the $\pi \neq A_1$ vertex causes the $A_1\pi\gamma$ residue in electroproduction to take the form $(q^2/m_A^2)g_{\rho\pi A_1}$ (here $\sqrt{q^2}$ is the photon mass). Thus, according to this model, there is no A_1 meson in photoproduction (in the one-pion approximation), but the model does make it possible to estimate the cross section at $q^2 \neq 0$.

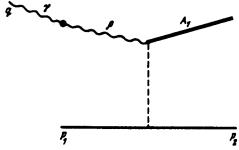
For estimates at not very large q^2 we can use the vector-dominance model. In the onepion approximation (see the figure) the amplitude takes the form

$$M = \frac{1}{(2\pi)^2} g_{\pi NN} \tilde{\upsilon}(\rho_2) \gamma_5 \upsilon(\rho_1) \frac{q^2 m_\rho^2}{q^2 - m_\rho^2} \frac{g_{\rho \pi A_1} \epsilon_{\rho}^{\mu} \epsilon_{\mu}(A_1) e}{(t - m_{\pi}^2) m_{A_1}^2 f_{\rho}}$$
(1)

The notation is obvious. For the cross section we obtain

$$\frac{d\sigma}{dt} = \left(\frac{g_{\pi NN}^{2}}{4\pi}\right) \left(\frac{e^{2}}{4\pi} - \frac{4\pi}{f_{\rho}^{2}}\right) \left(\frac{m_{\rho}^{2}}{m_{\rho}^{2} - q^{2}}\right)^{2} \left(\frac{q^{2}}{m_{A_{1}}^{2}}\right)^{2} - \frac{|t|}{(t - m_{\pi}^{2})^{2}} / \times \\ \times -\frac{4}{3} g_{\rho \pi A_{1}}^{2} - \frac{1}{8!^{2}(s, q^{2})} ; \qquad (2)$$

(in the estimate we have neglected the dependence of the $A_1\rho\pi$ vertex on q^2). I is the Moller invariant. For the width of the A_1 meson we use the mean value $\Gamma(A_1 \rightarrow \rho\pi) = 60 - 70$ MeV. We estimate the cross section at $\sqrt{(p_1 + q)^2} = \sqrt{s} = 3$ GeV, and at $|q|^2 = 0.15$, 0.5, and 1 GeV². The expression (2) is not suitable for estimates of the cross section, since it is well known that the one-pion approximation formulas lead to large overestimates. We must therefore take absorption into account in (2). In the simplest approximation this can be done by making in (2) the substitution $|t| \rightarrow m_{\pi}^2$.


We then obtain the values listed in the table. For comparison the table lists the A_2 production cross sections taken from [6]. The dependence of the A_2 -meson production cross section on q^2 is also taken into account in the vector-dominance approximation.

At the present time, cross sections \sim 0.1 $\,$ b can be measured in principle at SLAC, but large statistics are needed for a better study of the A region in electroproduction of the 3m state.

q ²	A ₁ , µb.	Α ₂ .μb
0,15	0,02	0.52
0,5	0,04	0,25
1	0,08	0,11

The vector-dominance model [5] with ρ -f exchange degeneracy explains the absence of the A₁ meson in photoproduction and, at small q², in electro-production [4]. At q² \circ -1 GeV² it predicts the splitting of the observed enhancement in the A region [7] into two closely-lying peaks of approximately equal intensity. In any case, the study of the 3π state in μ (e)p

 $+ \mu^{-}(e^{-})p + 3\pi$ is of great interest and can serve, together with the proposed nondiffraction reactions [2] Kp $+ A_1\Lambda$ and $\pi N + NA_1$ (backward) as a convenient process for the observation of the A_1 meson. Common to most reactions with A_1 production is the suppression of the cross section due to the conservation of the vector [2, 8] or tensor [5] current, since the A_1 meson is connected with the pion via Regge trajectories (particles) with natural parity.

As to photoproduction of the Roper resonance $\gamma P \rightarrow N^* \rightarrow N\pi$ [9], owing to the exchange ω -f degeneracy, the tensor dominance leads to vanishing of the isoscalar transition N*(1470) \rightarrow N + ω . We are unable, however, to

scalar transition N*(1470) \rightarrow N + ω . We are unable, however, to deduce from this any conclusions concerning the magnitude of the isovector transition N*(1470) \rightarrow Np; it is possible that it is phenomenologically small.

- [1] G. Ascoli, Report at Batavia Conf. based on CERN and Serpukhov Data.
- [2] G. Fox, Inv. Talk at 1972 Philadelphia Conf., CALT <u>68</u>, 361 (1972).
- [3] G. Wolf, Phys. Rev. 182, 1538 (1969).
- [4] A. Silverman, Proc. of the 4th Int. Symp. on Elect. and Photon Int., Liverpool, 1969.
- [5] Yu. N. Kafiev and V. V. Serebryakov, Nucl. Phys. <u>52B</u>, 141 (1973).
- [6] J. Eisenberg et al., Phys. Rev. <u>6D</u>, 16 (1972).
- [7] J. Ballam et al., Preprint SLAC-PUB-1163, 1972.
- [8] M. Kislinger, CALT 68, 341, 1971 unpubl.
- [9] R. L. Walker, Proc. of the 4th Int. Conf. on Electron and Photon Int., Liverpool, 1969.