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The Gell-Mann-Low function is obtained in all orders of perturbation theory for
a scalar theory with interaction H,, = gf(¢"/nd’x as n—ew, D =2n/(n—2)—2.
Its ultraviolet stability points are investigated.
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1. It is known that in quantum electrodynamics and in most hitherto-known
quantum field theory models one encounters the physical phenomenon of screen-
ing of the interaction due to the polarization of the vacuum, which leads to
vanishing of the physical charges, provided that the nonrenormalized charges
are small enough. !! At the same time, in certain presently popular nonAbelian
gauge models the situation is the opposite—the nonrenormalized charge van-
ishes at sufficiently small physical charges. 3! These results were obtained by
perturbation theory and therefore have a limited region of applicability. For a
final answer to the question of the internal contradiction of quantum electro-
dynamics and other traditional models of quantum field theory it is necessary
to calculate, in all orders of perturbation theory, the so-called Gell-Mann—
Low (GML) function, * defined as
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where g(k?/u?, g,) is the invariant charge, which is expressed in terms of the
renormalized Green’s functions and the vertex part [see (3)1, ¢ is the momentum
at the normalization point, usually chosen much larger than the masses of all
the particles in the theory, and g, is the value of the invariant charge at the
normalization point p?=p®, The renormalizability of the theory guarantees that
the right-side of (1) is independent of In(%%/u?) provided that it is expressed as
a function of the invariant charge.

2. We consider in this paper the problem of calculating the GML function in
the class of scalar models of quantum field theory described by the Lagrangian
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In order for the theory to be renormalizable, we assume the dimensionality
of space D to be equal to
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This class of models includes the known theories H;,, = g [(¢?1/4!1) d'x 1! and
Hipw=g[(9%/61) d®x. ]

In the theory with (2), the invariant charge is defined by the formula
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where T, is the vertex part for the n-point amplitude, d./ 'p? is the Green’s
function of the scalar particle. The external invariants for the vertex function
I, are chosen in the Euclidean region p}=p2>0, p;p; | ;4;==p*/(n—1). In this
case it is possible to make the Wick rotation {— —ix, in the Feynman diagrams.
We shall therefore write down from now on all the expressions in Euclidean
form.

3. In the theory with H, =g [(#*/4!) dx*, only the first three terms of the
expansion of the GML function in the invariant charge are known. 4! In this
paper we obtain the GML function in all orders of perturbation theory in the
limit of strong nonlinearity of the interaction:
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One can hope that even for the theory with H,, =g [(¢4/4!) d*x, and all the
more for the theory with H; ;=g [ (¢®/61) d®x, the approximation of the true
GML function, given by the limiting transition (4), will be good.
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The principal simplification that arises when determining the GML function
in the theory (4) is the following: The principal role in the calculation of the
invariant charge (3) in each order % of perturbation theory is played by the
vertex parts. The sum over the vertex parts with different numbers of external
lines #z; in each vertex, and with different internal lines #; ; that join the inter-
action vertices, has at #;=7;;=n/k a saddle that is broad enough to be able to
replace the summation by integration, and narrow enough to be able to take the
Feynman diagram outside the summation sign at the saddle point. The contri-
bution of this Feynman diagram contains only a singly-logarithmic ultraviolet
divergence, which relieves us of the need of calculating the lower-order
logarithm in diagrams containing internal divergences. The calculation of the
saddle point with respect to n; and #,; yields
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Here I'(z) is the Gamma function and ¢z = 0. 577 is the Euler constant.

The quantity C, is the contribution of the Feynman diagram for the vertex
part, in which all the points are joined by an equal number of lines
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The second significant simplification that is reached by taking the limit in (4)

is connected with the two-dimensional character of the Feynman integrals (6),
which enables us to obtain the answer in closed form
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It is easy to verify that the perturbation-theory series (5) for ¥(g) is asymptotic
(C,) | yow~ (RI)/2-1), It becomes necessary therefore to find a function whose
expansion in powers of & coincides with (5), a procedure which is not single-
valued. It can be verified with simple models that the correct prescription for
summing the series (5) is to replace it by a Watson-Sommerfeld integral
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In the form (8), the function ¥(g) is defined for all g. In particular,
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Thus, the Gell-Mann—Low function reverses sign with increasing g—there
is an ultraviolet stability point ¥(gg)=0 such that g(p?*/u?, g,)1,2 .. — g It can
be verified that with increasing # the number of ultraviolet stability points in-
creases like n!/4. The figure shows the GML function for two cases of physical
interest, n=4 and n=6. It can be assumed that the true GML function for the
theories with H,, =g [(¢*/4!)d'x and H,,, = g[(#®/6!) d®x will differ from that
calculated in the present paper (see the figure) by corrections of the order of
1/n (i.e., 1/4 and 1/6 for the two theories indicated above).
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