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We consider the bound states of N magnons in a ferromagnet with easy-axis
anisotropy, assuming that the energy of the magnetic anisotropy is small in

comparison with the volume energy. It is shown that there always exist bound
states with N> N,>1, where N, is determined by the ratio of the exchange

constant to the anisotropy constant. The investigated states can be treated as
“magnon drops.”

PACS numbers: 75.30.Et, 75.30.Gw
It is known that, in contrast to the one-dimensional casell=3], in a three-
dimensional crystal bounds states of two quasiparticles are produced only when
the amplitude of their attraction exceeds a certain critical value. Using
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FIG. 1. Distribution of the magnetization 6(»): ¢ ~ w=0. 1wy b= w=0.5 wy;
Cmw=w, ~ 0.915 wy; d= 0. 99 w,.

magnons in a ferromagnet as an example, we shall show that the condition for
the existence of a bound state of a large number N of Bose particles with a
zero total quasimomentum assumes a different form and becomes less
stringent.

In an investigation of states with a large number of spin deflections, we use
a classical description in terms of the macroscopic density M(r, t) of the mag-
netic moment. This approach, for a Bose system at N > 1, leads to the same
results as the quantum-mechanical analysis. The number N of magnons can be
naturally defined in such an approach as the number of spin deflections in the
system

1
NIM(r, o)} = — [iM, - M(r, ¢)}dr, (1)
2,
where p, is the Bohr magneton and M, is the saturation magnetization.
We write the energy of the ferromagnet in the form

oM
WiM(r, l)}=lfa(___) -3M§}dr, @)
2 dx;

where g is the anisotropy constant! (8>0), a=Ia?/2u¢M,, is the exchange con-
stant, I is the exchange integral of the ferromagnet, and a is the lattice con-
stant. We assume that p¢8My << 1.

The magnetization distribution corresponding to the bound state of N magnons
realizes the minimum of the energy function W{M} at a given integer value
N{M}=N= const and under the condition M2+ M%+M2%=M¢=const.

The components of the vector M are conveniently written in the form

M, =M cosé, M, + iMy= M sinGexplig}. (3)

It can be shown that the extremum of interest to us is realized at 9¢/ 9x;=0.
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In addition, one should expect the lowest energy to be possessed by the central-
ly symmetrical solution #=6(r). The equation for the function 0(r) is

2
x2_ﬂ_+_2_£-smecose+i sin = 0, (4)
‘\dr? r dr )

where w=w(N) has the meaning of the Lagrange multiplier for the correspond-
ing extremal problem, x}=0/B, and we= 2 (BM,.

Using the Landau-Lifshitz equation for the magnetization, we can verify that
the solutions of (4) correspond in the classical limit to circular precession of
the magnetization, with frequency w{N) and with a coordinate-dependent ampli~
tude. To determine the quantum-mechanical meaning of the quantity w, we ob-
tain the relation

GEN) ), 5)
dN
where E(N) is the energy of the bound state of N magnons. Thus, when the
number of magnons is increased by unity, the energy of the bound state in-
creases by #w(N). Consequently, %w() is the minimal energy of a quasiparticle
in a ferromagnet containing a bound state of a large number of magnons.

By analyzing the phase plane for Eq. (3), we can show that at finite N it has
solutions at 0 <w<wj. At w << w, it is easy to predict the qualitative form of
the plot (see Fig. 1a) and obtain the following asymptotic expressions:
cos8(r) =tanhl(r — 2x g/ w)/%ol, W) =2wo(2Ny/3N)!/3, and

E(N) = 2¢ N‘/»(31v/2)’/s (6)

where eg Bw, is the energy of a free magnon with k=0, and N;=4rs(l/
$/2,
24 oM

The results of the numerical analysis of the values of E and w are shown in
Figs. 2 and 3. It turned out that the functions EW) and w(N) are doubly-valued
functions of N, i.e., there exist two branches of bound states. A plot of the
function w(N) has a vertical tangent at N=N_~9.08N,, and w=w, = 0. 915w,.

It is easy to verify (see (5)), that at N2N, we have EN)=EW ) +hw, (N—-N )
+tAWN-N, $/2, and E(N,)~1.034N_, where A is a constant. It turns out that
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FIG. 3. Dependence of the energy
per magnon of the bound state of N
magnons on the number of magnons,
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the bound states of N magnons pertaining to both branches are stable against
small perturbations. It is clear that the states to arbitrary perturbations will
be those for which E(N)/N <¢€g, i.e., the transition to states of the continuous
spectrum is forbidden (we recall that the Hamiltonian (2) commutes with the
projection z of the total spin, i.e., it conserves the number of magnons). Thus,
all the states of the upper branch of E(N) and the states of the lower branch at
N <Ny, Ny=11.3N,, are metastable.

We have arrived at the conclusion that even if no bound states of two magnons
can be produced in a ferromagnet, bound states of N magnons with N=N_ can
be produced. One can apparently make the following general statement: if the
attraction potential U of the bosons is insufficient for the production of bound
pairs (U<U,), then bound states of N bosons can be produced at N=N,, with
N e (U, /UP/2,

Returning to the interpretation of the macroscopic meaning of the considered
states, we note the following. First, whereas an aggregate of “free’” magnons
can be regarded as a gas of quasiparticles with weak attraction (the energy of
the easy-axis magnetic anisotropy corresponds to paired attraction of long-
wave magnons), the bound state of a large number of magnons is a ‘“magnon
drop.*” This drop is in fact the embryo of a region with opposite direction of the
magnetization in an infinite single-domain ferromagnet.? It is clear that such
a state of the magnet can exist only under conditions of external action that
ensures a given number of spin deflections N. Second, for the existence of a
magnon drop it is necessary that the average lifetime of the magnons exceed
the time of their “condensation’” into a drop, and the spreading out of the drop
as a result of relaxation mechanisms in the magnet be offset by excitation of
the magnons by an external action.

The authors are deeply grateful to K. V. Maslov for a discussion. »

DThe neglect of the magnetic dipole interaction in the expression (2) for the
energy is formally justified only if 8> 4.

2)A similar distribution of the magnetization recalls the “spherical domain. ”

It must be borne in mind only that, in contrast to the usual theory of cylindrical
domains in thin films, in our analysis we have neglected the magnetic dipole
interaction.
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