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The process of black-hole production in gravitational collapse, accompanied by

production of pairs from vacuum, is described as a quantum transition of space-
time geometry from one quasistationary state into another. It is shown that the
mass of the produced black hole is finite and depends on the spectrum of the
collapsing matter.

PACS numbers: 95.40. +s

In the calculations made by Hawking? and othersf?31 of the evaporation of a

black hole as a result of pair production from vacuum, the reaction of this
production on the metric was calculated classically, as a result of which the
details of the process have remained unclear. In the present paper we propose
to regard the production of particles in a gravitational field and the influence
of this process on the geometry as an effect of quantization of the geometry,
The proposed formalism generalizes the approach developed by the author 5!
to quantum theory of particles in a Minkowski space, and makes use of the de-
finition formulated in!®) for particles in curved space-time, The application of
this scheme to the case of a collapsing body confirms in the main Hawking’s
conclusions, but it predicts that as a result of the collapse, with the quantum
radiation taken into account, a black hole of finite mass is left rather than a
bare singularity.

The proposed calculation of the reaction of the particle production on the
metric is based on two considerations:

1) Since pair production from the vacuum is a quantum effect, its action on the
geometry should also be regarded as a quantum transition from one geometry
to another. The probability amplitude of simultaneous pair production is the
probability amplitude of the corresponding change of the geometry.

2) The production and annihilation of virtual states does not lead in general
to a change of the geometry. The geometry is altered only by the production of
real states that describe a stable particle and a stable antiparticle. In the
formalism of quantum field theory, this corresponds to normal ordering of the
energy-momentum tensor,

To define the concept of a real state and the production amplitude of a pair
of real states, we use a causal propagator, i.e., the amplitude at K(x,x') of
the transition of a particle or antiparticle from one point of space~time to
another, 451 It was proposed in%! to define the causal propagator as the Green’s
function of the wave equation obtained by the de Witt—Schwinger proper time
method or, equivalently, by a negative imaginary increment to the square of
the mass. The states of the particles and antiparticles were defined in'® as
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solutions of the wave equation, extended by this propagator to the future or to
the past, respectively:

Yix) = (P y)(x) = ¢ d, doh” K (%, %*) S\ (x” )

(x> 3* for P*; 2> x for PT)

We now postulate that it is precisely the states $* which are real in the sense
that their production leads to a change of the geometry.

In™? this definition was investigated in the particular case when the metric
is real and positive-definite at pure imaginary values of the time parameter,
In this case the propagator, defined as m?—i0, when analytically continued to
the imaginary time axis (through the second and fourth quadrants of the com~
plex plane) decreases at infinity and can be defined by means of this property
(the analog of the Euclidean postulate of the ordinary quantum field theory). The
real states of the particle and antiparticle are in this case orthogonal relative
to the scalar product

W, ¥) = ifdak y*(x) T 0 (x),
b

so that we have the usual Fock space with a stable vacuum. We shall call this
the quasistatic space-time, The nongravitational interactions of the particles

in this space-time can be described with the aid of Feynman diagrams in which
the internal lines correspond to propagators and the external lines to real

states of particles and antiparticles or their complex conjugates. 671 In the case
of a nonquasi~stationary space-time the definition of the particles must be
refined by distinguishing between a particle that goes into the future and a par-
ticle that comes from the past. L8]

It is natural to assume that in quasistatic space the effects of pair produc-
tions do not influence the metric (real states are not produced), and consider
the effect of production of real pairs with simultaneous conversion of one
quasistatic space-time into another, To this end, two quasistatic spaces X;
and X » would be joined together on a surface that is a symmetry surface of
each of them (quasistatic spaces are symmetrical with respect to time rever-
sall™), The geometrical initial conditions for the Einstein equation'™ are made
to join continuously, and the energy-momentum transfer undergoes a discon-
tinuity as a result of the pair production, For a geometry that is symmetric in
time, the external curvature of the symmetry surface is equal to zero, The
requirement that the initial conditions be compatiblet®l causes the energy flux
density also to be equal to zero on the joining surface.

The passage of matter through the joining surface will be regarded as a
quantum process, assuming the amplitude of the transition of the particles to
be equal to (¥}, ¥3), and amplitude of pair production to be equal to (¥},97).

The subscripts show that the real states are defined with respect to the propa-
gators K; and K, that act in the space X1 and X,, The calculation should start
with a specification of the joining surface, the geometrical initial conditions on
this surface, and a statement concerning which particles in which space pass
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through the surface and which pairs are produced and are annihilated, (This
can be specified on the surface.) By the same token we define the energy-mo-
mentum tensor on the boundary, and consequently the geometries on both sides
of the surface. Knowing the geometry, we can obtain the propagators and cal-
culate the amplitudes of all the quantum transitions that occur on the boundary.
The total amplitude plays the role of the amplitude of the transition probability
of the matter and of the geometries from one state to another,

To calculate the collapse we assume as the model of the past half-space X
the external Schwarzschild geometry with mass M, and as a model of the future
half-space of X, the total Schwarzschild—Kruskal space with mass M’, The
propagator in X,, obtained from the Euclidean postulate, coincides™? with the
Hartle—Hawking propagator, 10T while the propagator in X 4 coincides with the
Bulware operator, [1!! Both spaces are joined together on the surface = const,
where ¢ is the Schwarzschild time for both geometries and must be made to tend
to +« after the calculation, The Bulware propagator K, separates as real
states of the particle the state with definite and positive Schwarzschild energy
Pp=exp(~iEH) ¥(x) = P{z. The Hartle—Hawking propagator K,, according to the
results of!1%131  coincides in the external region of the Kruskal space with the
temperature Green’s function corresponding to the temperature T’ = (fie3/
8rkG)M'-1=10% M'~!, This means that P}pp=(1+ngYg, and Pjpg=—ngp, where
ng= lexp(E/RT') —1]-1,

We consider a real state Py in the space X 1« The amplitude of its transition
to a real state ¥} in the space X, is equal to (¥},05), while the probability of
the transition to any of the real states is obtained by summing over i the square
of the modulus of the amplitude, and is equal to Yz, P =(1+n0)@z,05.
Analogously the amplitude of production of a pair with a particle in a state yj
in X and an antiparticle in the state y; in X, is equal to (z,47, and the total
probability of the production of the state ¥z is equal to — (P, P5,9p =2glz, 05 .
The ratio ng/(1 +ng =exp(—E/RT’) of the probability of the production of a par-
ticle to the probability of its absorption determines, by virtue of the detailed bal-
ancing principle, [1%? the thermal character of the emission spectrum and its
temperature.

The energy fluxes of the collapsing body and of the radiation should cancel
each other, by virtue of the joining conditions, on the joining surface. To this
end, the radiation energy must equal to the mass of the body (i.e., the mass
of the black hole is much less than the mass of the body), and both fluxes should
have a thermal character with one and the same temperature. If the collapsing
matter consists from the very outset of particles whose total energy is distri-
buted over the energies in accordance with the thermal spectrum, the tempera-
ture of the spectrum T is one that determines the temperature (and by the same
token the mass) of the black hole produced after the collapse: T =T, If this is
not the case, then the thermal character of the spectrum is established as the
instant of collapse is approached (the black hole acts as a thermostat) . The
assumption that the geometry X 1 is quasi-static then becomes incorrect, and
the considered method makes it possible to estimate only the order of magni-
tude. The collapse of matter consisting of particles with mass m of small
kinetic energy leads to a black hole with temperature T ~ mc?/k and a gravita-
tional radius R’ ~#/4gme. If m is the proton mass, then 7' ~1013, M’ ~1013 g,
and R’ ~101% c¢m,
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