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Spherically-symmetrical periodic solutions (isochrones) were obtained for the
scalar equation with spontaneous symmetry breaking. A number of proofs are
presented that the periodic formations previously observed in the numerical
experiment are isochrone excitations of the scalar field.

PACS numbers: 11.30.Qc, 14.80.—j, 11.10.—z

The possibility of describing elementary particles by classical solutions of
field theory is presently under extensive discussion (see, e.g., ,2)), From
our point of view particular interest attaches to the question of mesons of the
gluon type, which contain no quark—antiquark pairs in first-order
approximation, %!

In the hadron model proposed by Vinciarelly and Drell, the gluon field is
described by the equation

Ou = 4u(l - u?). (1)

The possible existence of gluon states described by (1) was discussed inf®,
Spherically-symmetrical periodic weakly-irradiating formations, called by the
authors “single-scale clusters,” were deduced numerically inf®l, The possible
existence of solutions of this type was indicated earlier int"},

Classical periodic solutions in the one-dimensional case for Eq. (1) were
sought in analytic form in'?), Since the series obtained for the solution in that
paper was asymptotic, the calculation carried out there affords only an indica-
tion of the possible existence of a periodic solution. A numerical experiment
for the one-dimensional equation (1) yielded long-lived states®]; there are
grounds for assuming that these states are described by solutions of the
type of(?? (or solutions close to them).

If we assume the method of?] to be correct, then it can be used to obtain
periodic solutions also in the three-dimensional case, In the spherically-sym~
metrical equation (1), we carry out the following transformations

2/2¢ 2y2er
= —————; p: —_—
\/1+52 \/1+62 ’

where € is a certain arbitrary parameter., We seek the function r, following, 21
in the form of an expansion in the parameter €

(2)

u=1+ z; 7

z=clg () + T (71, (p)sin 2~ D)1 + €27, (p)eos 2u1, 3

n=1

where the functions g; and f; are also expanded in series in €?
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g, (p) =3 g el f,(p) =  fp) M, @

j:o j=o

Substituting (3) and (4) in (1), we obtain for the first terms of the expansion (4)
the expressions

3 1 1
©) (0)72. (o) (0)72. (o) (o }3
g: =_—4 [fl ] » B3 ='—4 [fl ] ’ f3 =- 16 [fl l etc., (5)
while for £ we have
3
Apfl(o) — fl(o) + 5 [fl(o)]3 =0 (6)

with boundary conditions f{® () =0; f{?(0) <=; df{/dp | ,.0=0.

Inf1% there was proved for an equation of the type (6) the existence of an
infinite set of solutions {u,}, n=1,2,++, satisfying the boundary conditions
u,{0) <= u,(*) =0 and having n—1 zeroes in the interval (0,<), The solution for
n=1 was obtained numerically by Synge(!!] for an equation that reduces (6) by a
scale transformation,

It can be shown that solutions of (6) that are bounded at zero have zero deriva-
tives at zero. In fact, a bounded f{” means that near zero we have

£ = 4p% + 0(p%), (7

with a= 0, Substituting (7) in (6) we see that the equality is possible only at
a=0, The next term of the expansion is automatically found to be ~p?, q.e.d.

The calculation of the next terms of the series (4) cannot be carried out in
explicit form, since we do not know the solution of (6), We note that in the
planar case the terms of the series (4) increase very rapidly with j for a fixed
point near x =0 (apparently more rapidly than j!).

The solution (2)—(4), if it does exist, has one interesting property. Let us
return in (3) to the old variables 7 and ¢, Then z is periodic with frequency

RO (8)

1l +e

W =

where € characterizes the amplitude of (3). At small amplitude, i.e., at small
€, the period of the solution is independent of the amplitude, accurate to €2, and
we therefore propose to call the solutions (2)—(4) isochronous excitations of the
scalar field or isochrones. It is clear that this property does not depend on the
number of spatial dimensions of Eq. (1).

The isochronism of the oscillations at small amplitude is apparently observed
in the numerical experiment. According to (8), the period of the oscillations
is equal to

T=.f._. VI+ed =224+ 0.
V2

In the experiment we had isochrones with periods T'=2, 5—2,7. The values of
€ obtained for them agree sufficiently well with the experimental amplitudes.
A similar picture is observed also in the one-dimensional case.
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Comparison with the results of numerical experiments leads to the conclusion
that the periodic formations obtained in'! are described by solutions of the
type (2)—(4) or solutions close to them, and this means that the method oft?! is
correct, We note that in the employed approximation we do not obtain damping
of the isochronous oscillations, which should take place by virtue of the
radiation,

The answer to a question of whether the isochronous excitations considered
here correspond to real gluon mesons depends on the applicability of the
Vinciarelly—Drell model for the description of real hadrons, and also on
whether classical isochronous solutions correspond to quantum states of the
meson type.

The authors thank T.I. Belova and N, B. Konyukhova for numerical calcula-
tions and useful discusssions.,

DThis method was first used inf®? for a different equation.
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