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A denumerable set of oscillating spherically-symmetrical particle-like solutions of
the Klein-Gordon equations with cubic nonlinearity has been obtained. The
simulation-capable or extended particles turn out to be weakly-radiating and long-
lived.

PACS numbers: 03.70. +k, 11.10.Ef

In the last decades, numerous attempts were made to find particle-like solu-
tions (PLS) of the relativistically~invariant nonlinear field equations (see,
e.g. , the review(!}),

In the present paper we confine ourselves to scalar real fields satisfying the
Klein—Gordon equation with cubic nonlinearity:

ut—Au+u—u3=0. (1)

t
Equation (1) has nontrivial steady-state solutions—planar one-dimensional
solitons! and spherically symmetrical (ss) PLS, 4] These solutions are,
however, unstable, ™61 On the other hand, within the framework of Eq. (1) in
the (x,t) case (A— 8%/ &?), stable!? self-localized nonlinear oscillations!®?
(which we shall call for brevity “pulsons’) can be analytically described.

Of great interest in elementary-particle physics are, of course, spatial PLS,
The first example of long-lived ss pulsons was observed in1%? as a result of an
investigation of the equation for the Higgs field. Their amplitude ¢(#) decreases
slowly as a result of weak radiation, and the lifetime is 7 ~10°, In the present
paper, using the Fourier method in the presence of a small parameter (x2<< 1) {91
and a computer, we obtain and investigate the ss pulsons of Eq. (1),

We seek the solution of (1) in the form
ufr, t)= a(r)cos wt + b(r)cos 3wt + weu » (2)
Substituting (2) in (1), we arrive at the nonlinear eigenvalue problem
2 3

—_ 3. 1 -2
arr+rar+—4-a =Aa, A=l-0°%,

(3)
e (0)=0, afeo) = 0.

Let y{r) be its solution at =1, It is easy to verify that then y,=Vay(Va7) is

the solution of (3) for a given A =1~ %, We introduce A= 2a. The equation

obtained for the variable A

A+ 24 4+ a2=0 (4)
;

rr

535 Copyright © 1977 American Institute of Physics 535



ulo)

22 a
57
200“ U U kj U U w kZiﬂt

uo) FIG. 1. Plot of (0, for the field
ost b function (7, 0) given by formula (5);
a—k=1,3, b~k=0,8,
04 /\
AN 1
\j V U U bay t

1
\
¥

under the boundary condition 4,(0)=0, A(»)=0 have a denumerable set of solu-
tions A;(+),i=1,2,...,7,..., with the ith solution having (i —1) zeroes; A(0)
~ 4,34 <Ay)(0)~ 14,10 <A3(0) ~29,13<e 0 <A"(0) <ose, [34d]

Thus, the functions

u; ( r,t)—\/—-u 4, (ku r)cos(\/l—u, t) =u, A; (ku, r)cos(\/l—uzt)

4; (0)
E=1 (5)

with accuracy on the order of 2 < 1 are solutions of Eq. (1) and describe ss
pulsons. The expression for b(») at u2, <«<1 can be easily obtained:

b(r)=- WA (u 1), (6)
(r) /5 cAifugr)
The dynamics of the PLS (5) was investigated with the aid of a computer., We
considered the first three modes of the solutions (i=1,2,3) at amplitudes
%, =0.2, 0,4, and 0.7, At u,,=<0.4 the results of the calculations are approxi-

mated with high accuracy by formula (5) (deviation less than 1%).

We note in particular that, at any rate when #% < 1, the radiation of the pulson
at the intensity is very small, and its lifetime 7—= as umz—’O. If the larger
value #,,=0, 7 is specified in (5), then the pulsation amplitude c(f) decreases
slowly to ¢(f) =0, 63 by the instant £=80, and the characteristic radius of the
pulson R, increases,

The field cluster obtained by compression of (5) along the » axis (k>1) at a
fixed amplitude spreads out gradually, so that R,—« as { —~<=, while c(f) de-
creases monotonically (Fig, 1a), Conversely, a cluster that is wider than the
pulson (5) (k <1) begins to contract towards the center, and c(f) increases (the
slower the closer k to unity) to a value u,; ~1, This is followed by an “explo~-

v
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FIG, 2. Structures of the first three
modes of the pulsons of (5);a) i=1

b) =2, ¢) ¢=3. Dashed line—the
function wu;(7,0) = w/gqui(uo,r) , solid—
plots of H;(v).

sive” (faster than exponential) formation of a field singularity, 1u(0,f)1—w
(Fig. 1b). It is possible that this effect is due to the shape of the “potential
energy” curve of the field U) =u®—~ w%/2). It appears that the amplitude of
the pulsons of Eq, (1) ., is bounded from above by a constant u*

~1:upa, <u*~1, To describe these pulsons at u2,,<1 it is necessary to take
into account the next terms of the expansion a(7) ,b(¥),.++ in powers of upy,y. 11
The energy of the pulsons (5)

1 fu’2_+u +u—(u4/2)]r2dr— erzdr— f](dr (7)

is conveniently calculated for the instant when u; =0; substituting (5) in (7) we
have for the ith mode

B, =10u ) s 10, ) = 10 qu ) = u (107 < 1y et 10,

14

y?rzdr . (8)

O\Z

(i) 4y, 2 (i) - 2 1
1 . —_
h e,f(a'r > dri 120 = E_ of ‘ “drs h= 4

In the limit as u;,— 0 we have E;~uGI§’, and the mam contribution to the en-
ergy density of the field H(7,t) is made by the terms u; % and u?%, the sum of
which, u}+u?=ul(r,0) x(cos Yot +w?sindel), is constant accurate to ~uf for each
7, by virtue of the fact that w?= (1 —%% —1 as u}—~0. Therefore the distribu-
thIlS H(») and(7) (Figs. 2a,b,c) are mdependent of the time at the same
degree of accuracy. We note that since uo—u,,,/ 34,(0), the distribution of the
pulson “mass” along the radius at a given amplitude «,, is conserved in time
more accurately the larger the number of the mode 1.

Thus, by forgoing the requirement that the field function »{r,t) be stationary,
we can construct a denumerable set of PLS of Eq. (1), which are single-field
models of long-lived particles with zero spin, In the limit as #y— 0, at equal
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uy, the masses of these particles m,=E; are related like I{¥, and at identical
u,, they are related like I§¥/4,(0) (% 1: 2 :3:4:9:0¢0), It is poss1ble that similar
oscillating solutions will prove to be useful for the description of ¢ bosons (a
soliton model for these particles was first proposed in{!!!, where a one~dimen-
sional equation for the Higgs field was considered).

The results obtained at #2 <« 1 can be directly applied to the case of the sine-
Gordon equation

, - A Lu+sinu=0, (9)

However, within the framework of (9), unlike in (1), long-lived pulsons with
amplitude c(t) >1,c(f) ~ 27 have been obtained., We note that the pulsons of (103
can also be described at amplitudes c(f) << 1 by the Fourier method.

The author thanks B.S. Getmanov, E.P, Zhidkov, and V, G. Makhan’kov for
a useful discussion of the work,

DIn the numerical experiment we observed formation of flat pulsons out of
oscillating field clusters close to them.
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