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A classification is presented for the topologically stable singularities in the A and
B phases of He?, with the spin-orbit interaction taken into account.
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The first to consider singularities in superfluid He® was de Gennes. 1! He has
pointed out that the A phase of He® can contain singularities of the type of vortex
lines, disgyrations (linear singularities in the field of the vector 1 characteriz-
ing the direction of the orbital momentum of the pair), and singularities in the
field of the vector V that characterizes the spin state. A number of papers have
by now been devoted to various singularities in the A and B phases, 24! in-
cluding singularities of monopole character. (=7 In this paper we present a
topological analysis that helps answer the following questions: 1) what types of
singularities are topologically stable, i.e., cannot be transformed into a non-
singular configuration by means of a continuous deformation? 2) Which of them
are topologically equivalent, i.e., can go over into one another via a contin-
uous deformation? 3) What happens when singularities coalesce? The topologi-
cal singularity analysis presented inf4%1 is incorrect. Our analysis, which is
based on the use of the so called homotopic groups (see, e.g.,8!), makes it
possible to set each line singularity and each point singularity in correspon-
dence with an element of a homotopic group r( and m;, respectively. Thus, the
classification of the singularities reduces to an identification of the particular
groups for a given type of order parameter. The following rules hold in this
case: 1) if two singularities correspond to the same homotopic-group element,
then they can be converted into each other by a continuous deformation; 2) if a
single homotopic-group element corresponds to a singularity, then this
singularity is homotopically unstable; 3) if a singularity characterized by ele-
ment a of a group coalesces with a singularity characterized by element b, the
result is a singularity corresponding to the element a+ b, That is to say, the
coalescence of singularities corresponds to group addition of the elements of the
homotopic group. Since in our case all the homotopic groups are Abelian with a
finite number of generators, we can characterize each singularity by a set of
integer indices.

The order parameter in the A and B phase takes the respective form

Ay = const V(AL + iA]T), A; = const eiq)Rik(Z) R 1)

where V, &', and 4” are unit vectors, with A’, A”=0 and 1= A’ xA”; & is the
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The presence of spin-orbit interaction gives rise, besides the usual co-
phase of the condensate, and Ry, is the matrix of rotation through an angle
la | <7 about the a axis.
herence length £ (T), to a new length R~ (102—10%)¢ (T) (see!®!), over which the
spin-orbit interaction becomes comparable with the gradient energy. There-
fore the classification of the singularities depends on the dimensions of the in-
vestigated region. If one of the characteristic dimensions of the region is ¢
«<7r< R,, then spin-orbit interaction can be neglected in this region. In regions
with dimensions exceeding R,, the spin-orbit interaction alters the structure of
the order parameter, fixing the rotation angle | @ | ~104° in the B phase and
orienting Vi 1 in the A phase, and changes by the same token the types of the
singularity.

We now list the types of singularities with a brief indication of the homo-
topic-group elements to which they correspond.

L. Bphase at r < R,. There are no point singularities. The line singularities
are the following (we shall describe the line singularities by a cylindrical coor-
dinate system (z, p, ¢) with the z axis along the singular line and 0= ¢ = 2r):

1) Vortices with N circulation quanta & (»)=N¢, where N is an arbitrary inte-
ger. They are completely analogous to the vortices in He II. When the vortices
coalesce, addition of the circulation quanta takes place just as in He II. 2) Line
singularities in a field R;,, characterized by an integer index m equal to 0 or 1,
with m = 0 corresponding to absence of a singularity. When two singularities
with m =1 coalesce, the indices are added in modulo 2, i.e., 1+1=0, and a
nonsingular configuration is obtained. A similar situation takes place also in
nematic liquid crystals, where there is only one type of topologically stable
singularities (with a Frank index m=1), and all others can be reduced either to
this type of singularity, or to a nonsingular configuration (see!!%!). The singu-
lar solution with m =1 takes the form a(r)= (¢ —7)z.

The classification given above is a consequence of the fact that the region of
variation of the order parameter in the B phase is R=81xS0;. The homotopic
group for this manifold are my(R)=Z+ Z, and m,(R)=0 (the latter means that r,
is trivial; Z is the group of integers and Z, is the group of residues in modulo 2).

I. B phase with r > R,. (Here R=S'xS%, r,(R)=2Z, m,(R)=Z). We have the
following: 1) the vortices ®(r)=N¢ considered above; 2) point singularities in
the field of the vector w=a/|a . These singularities are characterized by the
whole-number invariant

N as, 98 9] @)
=—8—f C;yk( [ax] axk})l

where the integration is over the surface surrounding the singular point (N is
the degree of mapping of this surface on the sphere | w| =1 and runs through
all the integers). When singularities coalesce, the invariants are added. A
singularity with N=1 is a “hedgehog” w=r (where 7, 0, and ¢ are spherical
coordinates). The radius of the core of the “hedgehog” is of the order of R,
and the field & (») near the “hedgehog” takes the form @ =f(»)f, where f(r)
—104° at r >R, and f— 0 as r— 0.

OI. A phase at r<R,. (Here R=(S*xS03)/Z,, m1(R)=2Z,, m(R)=2Z). We have:
1) singular points charactenzed by the whole-number invariant (2), in which
w must be replaced by V. These singular points are analogous to the singular
points in nematic liquid crystals (the role of the director is played by V). Just
as in nematic crystals, the singular points with N=+ |N| are indistinguishable;
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however, if there are several singular points, then each is characterized by a
definite sign, accurate to a common sign. 2) Three types of singular lines,
characterized by an index m that takes on the values 0, 1, 2, and 3. When
these lines coalesce, addition of the indices in modulo 4 takes place. The
singular line with m=1 is a vortex with a circulation quantum 1/2, on which is
superimposed the disclination of the vector V with a unit Frank index (A’ + ;A"
=e¥/2(x+iy), V=xcos(¢/2) —¥sin(¢/2), The singular line with m =3 differs
from m=1 only in that the circulation quantum is equal to —1/2, The singular
lines with 7 =2 constitute either a vortex with a unit circulation (V=const, A’
+iA"=¢!®(x+1§)), or a disgyration, for example (V=const, 1=xp, A’=¢, A"
=47), the latter having the lowest energy among all the singularities of this
type. We note that since 2+ 2=0 a vortex with two circulation quanta goes over
continuously into a nonsingular configuration,

IV. A phase at > R,. (Here R=S03; m(R)=2Z,, n,(R)=0.) There are no point
singularities. The line singularities can be characterized by the same index m
as in ITI, except that it now takes on the values 0 and 2. Among the singular
lines with m =2, the maximum energy is possessed by the vortex with unit cir-
culation, At p < R, it goes over into a disgyration or into two singularities with
m=1{or m=3), spaced R, apart.

A few words now on monopoles (or vortons as they are called in!®1), Con-
trary to the statement made inl®!, there is no topological invariant for vortons,
so that their existence and stability depend on the possible potential barrier
that is produced when they are transformed into a different configuration. It
can be shown that at » < R, in the A phase the vortons, together with the two
vortices that emerge from it. belong to the type of smg‘ular lines with m =2 and
can relax without a barrier into a stable disgyraton with 1=5, In this region,
however, there is a stable point singularity (V= const, 1= 9 A= ¢ A”=7 are
the unit vectors of the spherical coordinate system), whlch connects a disgyra-
tion with 1=p and a disgyration with 1=—p. This singularity also belong to the
type m=2, but cannot relax into a stable disgyration without a barrier. This
singularity ceases to be stable in the region » > R,.

In conclusion, we are grateful to O. L Bogoyaylenkﬁ and S. P. Novikov for
valuable consultations. We are also grateful to E.I. Rashba for a favorable re-
view of the contents of the work.
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