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The extrema of a one-plaquette action and their relationships with phase
transitions on a space-time lattice are analyzed topologically. The results of
numerical calculations of the topological susceptibility are discussed. The limit
/y'-+oo is also discussed.
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Recent years have witnessed incontestable progress in our understanding of the

structure of the strong interactions of elementary particles. The introduction of a

lattice nonperturbative regularization has made it possible to use numerical methods

to evaluate physical quantities directly from the quantum-chromodynamics Lagran-
gian.t Despite their real predictive value, however, numerical methods suffer from an

obvious shortcoming in a lattice gauge theory: They ultimately generate a number for

a physical quantity, and it is by no means always possible to follow the particular

dynamics of the space-time lattice and the particular fluctuations of the gauge group

with which this physical quantity is associated. We believe that far more information

about a lattice gauge theory can be obtained by combining numerical and topological
methods.

We consider the following space-time lattice of action:

S =  ? X ( - R e P r x t ( U p )  ) ,  ( 1 )
p r

where the summation is over the plaquettes of the lattice, the p , are real numbers, and

X,lUol is the trace of the matrix Uo in the representation with index r. In numerical
calculations with, for example, the SU(2) gr6up, tlre actions which are customarily
used are the Wilson action @r:rtz#O, fl,rrrz :Ol, the two-charge action
(F,:rrr+O,P,:r*O,F,,r:0), and the Manton action (with a suppressed large-r
contribution). Action (l)is of course far more dfficult to study by numerical methods,
but it is the action which embodies information on the topological properties of the
gauge fields on the lattice. With action (1) the lattice gauge theory acquires a rich
phase structure; certain phases ofthe lattice gauge theory may be present in the con-
tinuous theory. Working from an analysis of the two-charge action, Bachas and Da-
shen2 showed that the existence of a nondegenerate local extremum of a one-plaquette
action is sufficient for the appearance of a phase transition in a four-dimensional
lattice gauge theory. The end points of the first-order phase transition lie on a line on
which the extrema of the one-plaquette action become unstable. In this letter we wish
to show the topological origin of phase transitions in a lattice gauge theory with the
one-plaquette action S oU P, l,U ol : 2,( - ReP,y "(U oll.
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The property X,(Uol-y,(gUog-t) for allgeG means that we can examine the
function So on homogeneous spaces3 (sets of orbits and sheets) with respect to inner
automorphisms of the group. Homogeneous spaces of the group may have a complex
topological structure. We consider the case of the gauge group SU(2). All the homo-
geneous spaces of the SU(2) group can be generated from the group unions of closed
subgroups. The homogeneous spaces from the followinga:

a) _ three-dimensional rnanifolds _ SU(2):-S3;SlJl2l/C,=L (n,l);
SU(21/D,":L,";SU(21/T :M,;SU(2)IO :Mr:SU(2)/Y :Mr;n : 1,2, .... Here the
symbol =means a homeomorphism; C,,Dr^,7,6,V are discrete subgroups; L (n,ll is z
lenslike space; and M, is the Poincar6 space;

b) two-dimensional manifolds S2; RP2 is a real two-dimensional projective plane;

c) a zero-dimensional manifold homeomorphic to a point.

We might note that the fundamental group of homogeneous spaces with a dis-
crete isotropic subgroup is ijomorphic to the isotropic subgroup itseli so that the
homogeneous spaces L (n,ll "L r^,M r,M zM t are topologically nonequivalent.

What is the orbit structure of the irreducible representations of the SU(2) group?
It is not difficult to show that in the case of the semi-integer values r : l/2, 3/
2,...there are orbits ̂ S3 and L(p,ll, p:3,5,...,2r lrll/21; for the integer valuee
r : 1,2,3,...the orbits are RP2 if r is even or S2 if r is odd. The orbits Zrn,I,Ir,Mr,M,
appear in the higher (r- l0) representations of the group.

We are interested in the behavior of the function So([B,l,Uo) on homogeneous
spaces and in its critical points.

We assume that the action So([4],Uo)belongs to the class of polynomial func-
tions on the group G; then it is a function So(IT,],ft)of the polynomial invariants
k: Ik.l,a : l, ... ,q ffor the SU(2) group we would have Q: li for the SU(3) group
we would have q :2'J.5 ln this case the orbits are planes in the space of polynomial
invariants, and we can write equations F/k):O,l:1,...,.r, which determine the
sheets, in terms of the polynomial invariants.6 We introduce the Lagrange multipliers
1,. An extremum on a sheet O is stable (with respegt to small changes in [y,l) if for all
points in the {rcilhborhood of the extremal set [Z ] the functio n So(l,],ft ) has an
extremum which varies continuously and diferentiably on O.

I f  we def ine q :  lkr l )  :  (kr,  . . .  ,knyLv . . .  ,A, l  :  [ r tnl  r<A<q + s,S,1ly,1,ry
:  fsp(y,} ,&&&)+ >f :Jf lk) ] [* ,rr :n,  then the equat ion an1o(T, l ,Tl  :0(2),
l<1,8<q*s, algng with the condition detlil0aSo(y,l,q)lr:a :0 determines the
stable extrem e ll.l of the functi on So(ITz|,ft ) on i2 which bre in a mutually one-to-
one correspondence with the solutions (ly,l,i) of Eq. (2).

It is also a straightforward matter to formulate the condiiions for the instability of
an extremum of S.(IT,| ,&) (in the case of the two-charge action, they determine
instability lines2). These instabilities may be of two types: (a) instabilities with respect
to small changes in [y,l within a single sheet; (b) instabilities with respect to a transi-
tion of an extremum from one sheet to another. The latter instabilities are particularly
interesting for a lattice gauge theory, since there is a change in the topology of the
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manifold on which the function S, is defined. Since we can introduce a measure and

the concept ofvolume on homogeneous spaces, the search for such transitions can be

carried out by Monte Carlo numerical methods.

Recent calculations of the topological susceptibility y, in a lattice gauge theory7

have yielded a value two orders of magnitude lower than that which is required to

solve the U, (l) problem of quantum chromodynamics. We believe that there are two

reasons for this discrepancy: (l) the meager topology of the manifold on which the

action is defined [usually on a subgroup of the icosahedron of the SU(2) group] and (2)

the choice of the action itself, in which the contribution of higher representations of

the gauge group is suppressed. The calculated value of y, in a lattice gauge theory

apparently is unrelated to the continuum of the theory with lattice action (1), which is

sensitive to the topology of the orbits and sheets.

For the groups U(il) with y'{-oo [the SU(Ir ) and U(N) groups are indistinguish-

able in the limit N-o] the orbits of maximum value are those which are constructed

on the maximal torus U N ( I ) [for these orbits, the eigenvalues of the matrices UeU (N \
are unequal: UeU (Nfi',1A,* ''. *An]. If ^i : A,, the singular orbits have the iso-

tropic subgroup U(2)surr-'�(l). The effect of flnite values of N (and the deviation

from the semiclassical description, N-o)stems from the increase in the volume of

the orbits constructed on the discrete subgroups'

We wish to thank A. S. Shvarts and V. L. Golo for a discussion of the topology of

homogeneous spaces.
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