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We formulate a general cluster Dual Fermion Approach to nonlocal correlations in crystals. The scheme
allows the treatment of long-range correlations beyond the cluster DMFT and nonlocal effects in realistic
calculations of multiorbital systems. We show that the simplest approximation exactly corresponds to the free-
cluster DMFT. We apply this approach to the one-dimensional Hubbard model. Already the first dual-fermion
correction to the free cluster leads to a drastic improvement of the calculated Green function.

PACS: 71.10.Fd, 71.15.—m, 71.27.+a

One of the successful routes to the description of
strongly correlated systems is the Dynamical Mean Field
Theory (DMFT) [1, 2]. It is commonly accepted now
that this approach typically catches the most essential
correlation effects, e.g., the physics of the Mott-Hubbard
transition [1, 2]. The method was implemented success-
fully into realistic electronic structure calculations [3, 4],
which now is a standard tool in the microscopic theory
of strongly correlated systems [5]. In the DMFT, the
many-body problem for the crystal is split into a single-
particle lattice problem and the many-body problem
for an atom in a self-consistently determined Gaussian
fermionic bath. The self-energy in the DMFT approach
is local in space but frequency dependent. However,
there are many phenomena for which non-local corre-
lations are important and often the relevant correla-
tions are even long-ranged. The examples are Luttinger-
Liquid formation in low-dimensional systems [6, 7], non-
Fermi-Liquid behavior due to van-Hove singularities in
two dimensions [8], the physics near quantum critical
points [9] or d-wave pairing in high-T,. superconduc-
tors [10]. Obviously, the DMFT is not sufficient for
the description of such systems. To treat these non-
local correlations it is desirable to combine local inter-
site many-body phenomena, like the formation of RVB
singlets 7], and long-range correlations. The former can
be taken into account within various cluster approaches.
They include the so-called Dynamical Cluster approx-
imation (DCA) [11], real space periodic [12] and free
cluster approaches [13], as well as the Cellular-DMFT
[14](CDMFT) and the variational cluster approach [15].
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Recently, steps have been taken to go beyond DMFT
and to treat long-range correlations. One of them is
the Dynamical Vertex approximation [16] and similar
approaches [17, 18], where a diagrammatic expansion
around the DMFT solution is made. A principally new
scheme with a fully renormalized expansion called Dual
Fermion Approach has been proposed[19]. It is based
on the introduction of new variables in the path integral
representation. This approach yields very satisfactory
results already for the lowest-order corrections, while the
schemes proposed in Refs. [16— 18] operate with infinite
diagrammatic series and require the solution of compli-
cated integral equations. A scheme similar to the Dual
Fermion approach has been discussed earlier in terms of
Hubbard operators [20], but without attempts to use it
in a practical calculation.

In this letter we formulate a general cluster (or multi-
orbital) Dual Fermion scheme for non-local correlations.
Similar to known cluster methods we consider a sys-
tem with local interaction and assume that most of the
correlations are located within the cluster. We point
out however that the remaining long-range part of the
correlations is physically important, and take it into ac-
count within a diagrammatic expansion of a special kind.
By transforming the original interacting problem to so-
called dual fermion variables we are able to include the
local contribution to the self-energy into a bare propaga-
tor of the dual fermions and achieve much faster conver-
gence of the perturbation expansion. An outcome of the
scheme is the Green function of the original variables re-
stored from a certain exact relation. Our method allows
the treatment of clusters or multiorbital atoms within the
Dual Fermion framework and can describe long-range
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correlations in real systems. We test the scheme for the
half-filled one-dimensional Hubbard chain and demon-
strate its superiority over short-range cluster methods.

Our goal is to find an (approximate) solution to a
general multiband problem described by the imaginary
time action

S[C C Z cwka'm ((lw + ,"L) hk”)mm’ Cokom’ T
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Here hy, is the one-electron part of the Hamiltonian,

= (2n + 1)x/B,n = 0,+£1,... are the Matsubara fre-
quencies, 8 and p are the inverse temperature and chem-
ical potential, respectively, o =1, labels the spin pro-
jection, m,m' are orbital indices and c¢*,c are Grass-
mannian variables. The index 7 labels the lattice sites
and the k-vectors are quasimomenta. It is important to
note that can be any type of interaction inside the mul-
tiorbital Hi,s atom. The only requirement and our main
assumption is that it is local:

* 1 * *
Hint[ciaci] = Z Z/dT U1234cilcizci4ci3 ’ (2)
i

where U is the general symmetrized Coulomb vertex and
e.g. 1 = {wimyo1} comprehends frequency-, orbital-
and spin degrees of freedom and summation over these
states is implied.

The formalism is equally applied within the cluster
(super-site) formalism. In this case, i and m label clus-
ters and atoms within the cluster, repectively, while k
runs over the reduced supercell Brillouin zone. In order
to capture the local physics, we introduce a cluster im-
purity problem just in the spirit of CDMFT][12, 14, 13]
in the form

1mp[c C Z cwam (uu + /-L)]. — A““")mm’ Cwom' +
wo
+ Hing[c*, ], (3)

where A is an as yet unspecified hybridization matrix
describing the interaction of the impurity cluster with an
electronic bath. We suppose that all properties of the
impurity problem, i.e. the single-particle Green func-
tion g, and the irreducible vertices 44, v(®), etc. are
known. Our goal is to express the Green function G x
and vertices 7y of the original lattice problem via these
quantities.

Since A is local, one may formally rewrite the origi-
nal lattice problem in the following form:

Sle*, ] =

Z Slmp [cwza'7 cww] -
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(4)

)’ c:;ka' =
= (--v ¢ koms---)- Omitting indices, the Gaussian
identity that facilitates the transformation to the dual

variables in matrix-vector notation is

We introduce spinors € ko = (--- , Cukom, - - -

/ exp (~£*Af — £ Be - ¢* Bf ) DIf, £*] =
= det(A) exp (C*BA*IBC) , (5)

which is valid for arbitrary complex matrices A and B.
In order to decouple the non-local term in Eq. (4), we
choose

A= 971 (Apo — hio) ™ gwa'l ’
B =0y (6)

where g, is the Green function matrix of the local im-
purity problem in orbital space (m, m'). Using this iden-
tity, the lattice action can be rewritten in the form

S[C*a c, f*a f] = Z Ssite,i +

—1 —
+ Z [ wko gwa Auvs — hko’) !]w; fwku] ’ (7)

wko
where
Z Ssite,i = Z Simp[c:’ ci] +
i 7

+ s g;;cwia + Coio g;;fwiv- * (8)

Here the summation in the last term over states labeled
by k has been replaced by the equivalent summation
over all sites. The Gaussian identity can further be
used to establish an exact relation between the lattice
Green function and the dual Green function. To this
end, the partition function of the lattice is written in the
two equivalent forms

7= [ exp (-Sle*,el) Dle,e*] =
=2, [ [ (slet e £, 0 DIEEIDle, ), )

where

Zy = H det [gwo (Aw

wko

o~ hka’) gwa'] . (10)
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By taking the functional derivative of the partition func-
tion, Eq. (9), one can obtain the following exact rela-
tionship between the dual and lattice Green functions:

kaa = (A hka)il +
+ (ngr (chr—hktr)) kacr (( wa_hkcr) gwcr)_l ) (11)

where the lattice Green function is defined via the imag-
inary time path integral as

G2 = —%/clcg exp (—S[c*, ¢]) D[c, ¢*] (12)

and similarly for the local Green function g and dual
Green function G¢ with Z and S replaced by the corre-
sponding expressions.

We now wish to derive an action depending on the
dual variables only. This can be achieved by integrating
out the original variables ¢,c*. The crucial point is that
this can be done for each site separately:

/ exp (—Suisele?, i, £, £]) Dles, €} =

= impe_(z‘” £oio 907 fuie tVIIE A ])' (13)
This equation can be seen as the defining equation for the
dual potential V[f*, f]. Since Sste contains the impurity
action, expanding the remaining part of the exponential
and integrating out the original variables corresponds to
averaging over the impurity degrees of freedom. Equat-
ing the resulting expressions by order, one finds that the
dual potential in the lowest order approximation is given

by

* 4 o ol #
VI, £ =1 Z’Yfz)ulef fiafis +. (14)
where
4 —1 —1[.im imp,0 -1 -1
’Y£2)34 9111 922 [X1'293'4' - X1'2I')3'4'] 93139414 »
Xio51) = 914923 — 13924 (15)

is the fully antisymmetric irreducible vertex. The lo-
cal two-particle Green function of the impurity model is
defined as

1
Z—/clczcgcz exp (—Simp[c”, ¢]) D[c, c*] .
imp

(16)

ll'l'lp .
X1234 =

The dual action now depends on dual variables only
and can be written as

Salf*, ] = =) £, (Gorey) ko + > VIE, £]
wko [
(17)
Mucema B AT Tom 86 BRI 9-10 2007

The bare dual Green function is given by

-1
GSJI((JO' = “Yuwo [gwa + (Awa' - hka)il] Guo - (18)

and the dual self energy reads

2}wku - (Gdo )71

wko

(kacr) . (19)

Let us introduce non-local part T as the difference
between the self-energy ¥ of the lattice problem and it’s
DMFT value, ie. & = g~ + A — h — G~!. For this
quantity, there is a simple matrix relation with the dual
self-energy:

St =%t +g, (20)

as one can obtain from the previous formulas.

It immediately follows that & = 0 for ¢ = 0, which
corresponds to neglecting the nonlinear dual potential
V, i.e. non-interacting dual fermions. In this case the
DMFT result is restored, for a properly chosen A (for
details, see below). In order to obtain the nonlocal cor-
rection to the DMFT, we thus need to calculate the dual
self-energy with higher order in V. This is achieved
by performing a regular diagrammatic series expansion
of the dual action, Eq. (17) and considering the low-
est order skeleton diagrams for X4, constructed from
the irreducible vertices and the dual Green function as
lines. The use of skeleton diagrams ensures that the
resulting theory is conserving according to the Baym-
Kadanoff criterion [21, 19]. The diagrams considered
here are shown in Fig. 1. The lowest order diagram is
local while the next diagram already gives a nonlocal
contribution to the self energy.

So far we have not established a condition for A.
We require that the first diagram in the expansion of
the dual self-energy should be equal to zero at all fre-
quencies. Since (4 is local, we can use the condition
Yk G¢, = 0. In the simplest approximation, which cor-
responds to non-interacting dual fermions, the full dual
Green function is replaced by the corresponding bare
Green function and the above condition can be reduced
to
-1

—hko) | =0 (21)

> [guo + (Ao

k

which is equivalent to the self-consistency condition
for the hybridization function in free-cluster CDMFT
[12, 14, 13]. Usually, this equation is solved iteratively,
with a repeated substitution

A — A + gilGlocG_

loc*

(22)

9*
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Finally the resulting scheme is as follows: in order
to include non-local correlations beyond the cluster ap-
proximation, one should take into account two-particle
vertex, which plays the role of the effective interactions
between the dual fermions, and perform the standard
perturbation expansion. In our calculations, we take
into account the first non-vanishing diagram for the dual
self energy (the right diagram in Fig.1), and use the
same substitution rule (22). The calculation procedure

Fig.1. The first two lowest order diagrams for the dual self
energy X4

|
outer loop &

Anew = Aold tg : loc Glolc
Fig.2. The scheme of the calculation procedure. The outer
loop corresponds to the an iterative calculation of the hy-
bridization function 4; it requires a solution of the im-
purity problem at each step. The inner loop describes
the iterative calculation of the skeleton diagrams for dual
self-energy, given the properties of the impurity problem.
DMFT implies T = 0 and therefore does not require the
inner loop, as indicated by the dashed line

is as follows (see Fig.2): Starting from a starting guess
for A, e.g. the DMFT result, we obtain a new local
Green function g and the irreducible vertex y(*). The
continuous-time quantum Monte Carlo impurity solver
[22] is employed for this calculation. Given g, we es-

timate the bare Green function (18) and calculate the
diagram for ¥4 with the lines given by G¢°. This guess
for ¥4 is used for a new estimate of the dual Green
function. A repeated execution of this procedure is il-
lustrated by the inner loop in Fig. 2. After a few iter-
ations it converges to a value for f), corresponding to a
skeleton diagram (a diagram with renormalized lines).
The dual Green function and the lattice Green function
are then again used to obtain a new hybridization func-
tion according to the rule (22). It serves as input for the
calculation of a new local Green function and renormal-
ized vertex in the impurity solver step. This outer loop
is also executed until self-consistency. Self-consistency
for both loops is usually reached after a few iterations
(depending on the system). The computational cost for
the calculations aside from DMFT is less than for the
DMFT itself, whereby the computation of the vertex is
the computationally most expensive part.

In order to obtain information about the instabilities
in the system, one needs to consider the two-particle
Green function. The exact relation between the four-
point correlation function for original lattice problem
and the dual fermions is established by taking the sec-
ond derivative of Z with respect to hyx using the two
equivalent representations of the partition function, Eq.
(9). After some straightforward algebra we obtain the
following expression for the four-point correlation func-
tion:

Xowrp = [(A=hH)TT@ (A=), 4+
+[(A=h) T R[(A—h) g 'Gag (A —h) Y]
+[[(A - GagT (A -R) @ (A-R) ],

+[(A - h)_lg_l]Al [(A- h)_lg_l]um Ximns %

x[ga-n)1 o Aa-R)Y, . (23)

Apvp +

+

Here x& ... = (fifmfif}) is the dual four-point correla-
tion function and (A ® B)auvp = AxpBuv — Axu By, is
the antisymmetrized direct product of two matrices.

As one can see from Eq. (23), the two-particle ex-
citations for dual fermions coincide with those for real
fermions so that information about the instabilities can
be obtained by considering the dual correlation function.
Two different approximations to the four-point correla-
tion function are obtained by summing up the ladders
for the two-particle dual fermion Green function:

d(pp) _ _d,0 d,0 d(pp)
lep:r = Ximnr + leup’YPVHAXAup:r (24)
or
d(ph) _ . d,0 d,0 d(ph) 25
Xinmr = Xinmr + Xlump’YPW’/\X/\nup ’ ( )
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where the first equation is written for the particle-
particle channel and the second for the particle-hole
channel. Here x¥ = G4 ® Gy is the bare two-particle
dual Green function. The particle-particle channel is
useful for investigation of superconducting instability,
while the particle-hole excitations can give different mag-
netic behaviors.

As an example, we consider the two-site cluster cal-
culation for the half-filled Hubbard chain. This model
is described by the following Hamiltonian:

Hy+ Hypy =t E (C:[_HC,' + CI_IC,') +U E NipNg)
i i
(26)

When this one-dimensional system is treated as a chain
of two-site clusters as depicted in Fig.3, the tight-binding

t t [T

I
I__T:I"_T__I":""_ _'__T_'\:)'__T_I__‘

! 1 U U :_ 1

Fig.3. Schematic representation of the 1D chain as a chain
of two-site clusters

Hamiltonian for this model is readily shown to be

0 81+ e~2ihka)
hy = 24k
t(1 + eika) 0

Due to the absence of a Mott transition in one dimen-
sion [23], the system is an insulator for any finite value of
the on-site repulsion U. For the case of sufficiently large
U/2t, the basic physics of the model is determined by
the tendency of the formation of a spin-singlet between
neighboring sites [7], and thus one can expect that the
two-site cluster serves as a reasonable starting point, in
contrast to the single-site DMFT. There is an obvious
note that the translational invariance of the original lat-
tice is broken in such a consideration. However it is not
crucial for our purposes, since we will only be interested
in the local part of the Green function.

In Fig.4, we compare our results with the one ob-
tained by a Density Matrix Renormalization Group
(DMRG) calculation [24], which is known to reproduce
the spectral properties of 1D systems quite well. For
our calculations we use the parameters U/t = 6 and
B = 20. The DMRG solution corresponds to 7' = 0.
We also present the results of the single-site DMFT and
dual-fermion calculations. The single-site DMFT gives
a qualitatively wrong answer, i.e. predicts the system
to be metallic even for U as large as U/t = 6. The
single-site dual-fermion approach fixes this, but is still
quantitatively inaccurate. On the other hand, the results
of the two-site CDMFT already provide a rather good

(27)
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Fig.4. Local Matsubara Green function on the Matsub-
ara axis obtained from DMRG for T = 0 in comparison
with the results obtained from DMFT and from fully self-
consistent dual fermion calculations. For the 2-site calcu-
lation the renormalization of the vertex has a small effect
since the CDMFT is already a good starting point. For the
single site calculation the renormalization is essential since
DMFT even gives a qualitatively wrong answer, while the
dual fermion result correctly predicts the system to be an
insulator

description of the local Green function. This underlines
the statement that local singlet physics is of pivotal im-
portance. It is known that this result is hardly improv-
able by the consideration of larger clusters [24], which
indicates the relevance of long-range correlations in the
model. However, the two-site dual-fermion scheme with
just the lowest-order correction taken into account im-
proves the results substantially.

To conclude, we have generalized the recently pro-
posed Dual Fermion Approach to the multiorbital case,
facilitating the treatment of multiorbital systems within
this framework. The approach was applied to the one-
dimensional Hubbard model starting from the free two-
site cluster DMFT solution. The cluster dual fermion
solution considerably improved the CDMFT result. The
cluster formulation allows to combine this approach
with realistic density functional calculations and thus
opens a new way to describe long-range correlations in
real systems. The advantage of this multiorbital ap-
proach is that it preserves translational invariance. Dis-
cussing possible further developments for Hubbard-like
lattices, one can restore the translational invariance of
the method. This can be achieved if the dual-fermion
expansion is built on top of the cluster DCA method.
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