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Triple coalescence singularity in a dynamical atomic process
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We show that the high energy limit for amplitude of the double electron capture to the bound state of the
Coulomb field of a nucleus with emission of a single photon is determined by behavior of the wave function in

the vicinity of the singular triple coalescence point.
PACS: 31.25.Eb, 32.80.—t

It is well known that the solution ¥(ry,rs) of the
Schrédinger equation for a two-electron system in the
Coulomb field of infinitely heavy point nucleus is sin-
gular at the triple coalescence point r; = rp = 0 [1-
4]. The wave function can be presented as a general-
ized power series containing logarithmic terms. The
behavior of ¥(r;,rs) near this point is not very im-
portant in calculations of the binding energy since the
corresponding phase volume is small. On the con-
trary it becomes crucial for calculation of the local en-
ergy E(r1,r3) = HU(r1,12)/¥(r1,1r5) [4]. However the
triple coalescence point did not manifest itself in a dy-
namical process until now.

In this letter we present for the first time an ob-
servable effect in which the interesting behavior of the
two electron wave function ¥(r;,re) near the point
r; = ry = 0 (as well as that near the double coalescence
points r; = 0 and ry = 0) plays an important role. For
that we consider the double electron capture followed by
the emission of a single photon in the high energy limit.
Since the first attempts to detect this process in colli-
sions of a light atom with a heavy nucleus [5] a number
of experimental [6, 7] and theoretical [8 - 10] papers were
devoted to this reaction.

Neglecting the internal motion of the electrons in the
light atom we consider the capture of two continuum
electrons with equal linear momenta p; = p» = p [8].
The process is characterized by the kinetic energy per
nucleon En (MeV/u). The corresponding electron ki-
netic energies are ¢ = Eym/my where m/my is the
ratio of the electron mass to the nucleon mass. We con-
sider the case corresponding to nonrelativistic contin-
uum electrons € € m, i.e. Ey < my (in the system of
units with i = ¢ = 1), thus we put p = (2me)*/2. We
assume the charge Z of the heavy nucleus to be much
larger than that of the light atom Z;, i.e. Z > Z;. On

the other hand we assume Z to be small enough for the
description of the bound state by the Schrédinger equa-
tion, i.e. (@Z)? < 1, with a@ = 1/137 the fine structure
constant.

The energy of the emitted photon is w = 2¢ + I with
I > 0 standing for the binding energy of the two elec-
trons in the ground state of the heavy nucleus (we con-
sider this very case). The momentum q = 2p — k with
k standing for the photon momentum is transferred to
the nucleus. We consider the high-energy limit of the
chosen process

e > I, (1)

with I; standing for the single-electron binding energy.
Since Z > 1 we can put I} = n?/2m with n = maZ be-
ing the characteristic momentum of the bound 1s state.
Thus condition (1) is equivalent to £2 < 1 for

§=maZ/p. (2)

The parameter ¢ describes also the interaction be-
tween the incoming electrons and the nucleus. For
€2 < 1 this interaction can be treated perturbatively.
Thus the electronic wave function of the initial state can
be obtained by an iteration of the Lippmann—-Schwinger
equation

& =3+ GV, (3)

with V' = Ven + Ve, while Vo and V. stand for the
interactions between an electron and the nucleus and
between the electrons correspondingly, G is the Green
function of two free noninteracting electrons, while ®,
is the product of plane waves.

Due to conditions (1) the electrons transfer the large
momentum g > 77 to the nucleus. This can take place
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in the initial or final states. The two mechanisms pro-
vide contributions of the same order of magnitude to the
amplitude

F = (T]v|%), (4)

where v is the operator of the interaction between the
electrons and the photon, for which we assume the gradi-
ent form. Each act of exchange by the large momentum
q > n between the continuum electrons and the nucleus
provides a small factor n*/q* [11] since each of the func-
tions G and V on the right-hand side of Eq. (3) drops as
1/¢. (For the Coulomb case this can be shown explicitly
since the Fourier transform of the wave function drops
as ¢~*). Thus to obtain the lowest order of expansion
of the amplitude (4) in powers of & we must include the
two lowest terms of iteration of Eq. (3) putting

S =20+ P1; D1 =N+ Pie; 5
®1n =GVen®o;  P1e = GVee 0. ®)
Using Eq. (5) we can write
F=Fy+ Fi; Fi=Fn+Fie; Fo=(T7®0);
Fin = (¥ly[®1n); Fle = (¥[7]®1e), (6)

where we expect Fy and F; to provide contributions of
the same order.

Let us start with the calculation of the ampli-
tude Fy. Denote @o(i,p;) = €'Pit) then &, =
= vo(1,p1)p0(2,p2) (recall that in our case p1 = p2).
Below we assume that the electron which emits the pho-
ton is labelled by “1”. Thus

Fy = 2/d37’1d37“2‘1’(1'1,r2)71<P0(1aP)<P0(2aP) (7)

with the operator -; acting on ry. Since p > 7, the
integral (7) over 7y is saturated by 72 ~ 1/p < 1/n,
while 1/7 is the characteristic scale of the bound state
wave function ¥. Keeping 7; to be finite we can expand
the function ¥(ry,rs) near the point ro = 0. Limiting
ourselves to the linear terms of the expansion we can
write

with ®(ry,75,p) = ¥(ry, 1), p = |r1 — r2|. Following
[11] we can present

li!(rl, 0,71) = )1‘1_r>r(1) \il(rl, 0, 1'1)6_)""2
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and obtain for the corresponding contribution Fyy, to
Fy (lower index “lin” corresponds to the terms linear in
) in (8))

16 w(ep)

Forin = — o Jo; Jo = /d37"1‘i”r2(7'1a0aTl)ei(prl)a

9)

with e the vector of the photon polarization, \11;2 denotes
the partial derivative of the function ¥ with respect to
ro at ro = 0.

The contribution Fjn to the amplitude is composed
by the lowest order Coulomb corrections to the plane
wayves, describing continuum wave functions in the am-
plitude Fy. Due to the operator v the correction to the
wave function of the electron “1” contains a small factor
of the order £&. Thus the amplitude F;y can be presented

as
d3p/
=2 [ @y
(¥|71]p0(1,P)p0(2,P")) {90 (2, P)|Ven (2) |00 (2, P))

10
e—p'?2/2m (10)
with V.n(2) standing for the interaction between the
electron “2” and the nucleus. Straightforward calcu-
lation provides

1 . - )
Finy = _WJI; Ji = /d3’l"1\I’(7"1,0,’I‘1)€z(pTl)-
(11)
Thus
167 (e -
Foiin + Fin = —%(Jo +nJ1) =0.  (12)

Now, the last equation is due to the Kato cusp condi-
tion ®¥!_(r1,0,71) = —n¥(r1,0,71) [12] which can be
viewed as the result of cancellation of the terms 1/7; in
the Schrédinger equation.

The value of Ji can be obtained by integrat-
ing (11) three times in parts. This provides Ji =
= —(87/p?)¢},, (r1 = 0) with p(ry) = ¥(ry,0,7;). Using
the expansion

- mo -~
U(ry, 7o, p) = (1 —nry —nra + Tp—l—...) ¥(0,0,0)
(13)

at 71,72 — 0 (the dots stand for nonlinear terms) [2-4]
we find J; = 87aZN?/p*, with N2 = ¥(0,0,0) as the
value of the wave function at the origin. Thus the Z de-
pendence of the amplitudes Fg;;,, and Fin is expressed

by the factor Z2N?2 ~ Z5. Both amplitudes Fy;;, and
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F1n describe the contributions in which each of the elec-
trons transfers momentum of the order p >> 1 to the nu-
cleus, providing a factor ~ aZ to the total amplitude.
According to (12) such contributions cancel.

However there is another contribution to the ampli-
tude F,.n in which one of the captured electrons looses
its large momentum p by transferring it to the second
electron. The latter transfers the momentum 2p to the
nucleus. Such contribution has the same energy depen-
dence as the amplitude, depending on Z as Z*4, since the
electron interaction with the nucleus, proportional to aZ
is replaced by the electron—electron interaction which is
proportional to a. This contribution is described by the
nonlinear terms of expansion (13) for the wave function
denoted by dots on the right-hand side. However due
to the singularity at the point r; = ro = p = 0 the ex-
pansion (13) beyond the linear terms is not the Taylor
series and the coefficients cannot be presented in terms
of partial derivatives. The leading nonlinear terms are
obtained in [2—4].

The contribution Fi. can be calculated in similar
way. It also behaves as Z*, e.g.

Fie = —16n%anN>(e - p)/p". (14)

Finally, the high energy limit of the amplitude is
F = 2(/d37'1d31°2\:p(1'1,1'2) X
x yei(Piri)ti(pera) _ 1677 — 2A), (15)

with p; = pa = p, A = 4n?anN?(e - p)/p®. The
three terms in brackets correspond to the contributions
Fy, Finy and Fi.. Since the integral is determined by
r1 ~ 79 ~ p~! = 0, one should use generalized power
series found in [2—4] for calculations.

Equation (15) is true for w < 7. At larger values
of photon energies there are some additional terms cor-
responding to the two-step mechanism [13] in which the
process can be viewed as the eN scattering followed by
quasifree emission of the photon. The effects of internal
motion of the target electrons [10] (in experiments the
light atom is the target) provide the contributions of the
order maZ; /p being thus beyond the high energy limit.
These effects can be incorporated into Eq. (15).

In conclusion we recognize that the amplitude F' in
Eq. (15) depends sensitively on behavior the two elec-
tron wave function at the points r; = 0, rs = 0 and
r1 = ry = 0. So the measurement of the cross sec-
tions for double electron capture with emission of a sin-
gle photon in the high energy limit gives information on
the wave function at the double and triple coalescence

points. Such a possible experimental access to the triple
coalescence point was not yet proposed in literature. In
the experiments [5 7] the projectiles which captured two
electrons were registered in coincidence with the photon.
This enables to distinguish the process among the other
capture processes in spite of its small cross section. De-
tection of the process at small values of £ would be a
bright manifestation of the three particle singularity in
a dynamical process.

Of course, Eq. (4) describes also the amplitude of
double photoionization with momenta of the outgoing
electrons p1 = pa, |pi| > 7. It determines the dou-
ble differential cross section do/dedr at €1 = €3, 7 =
= (p1p2)/p1p2 = 1, which thus depends on the wave
function behavior at the triple coalescence point. How-
ever this region provides a minor contribution to the
differential cross section do/de, which runs beyond the
high energy limit. The contribution to the double pho-
toionization cross section is still smaller. On the con-
trary, in the double electron capture with single photon
emission the triple coalescence singularity determines
the high energy limit of the cross section.
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