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Two different scenarios of the quantum critical point (QCP), a zero-temperature instability of the Lan-
dau state, related to the divergence of the effective mass, are investigated. Flaws of the standard scenario of
the QCP, where this divergence is attributed to the occurrence of some second—order phase transition, are
demonstrated. Salient features of a different topological scenario of the QCP, associated with the emergence
of bifurcation points in equation e(p) = p that ordinarily determines the Fermi momentum, are analyzed.
The topological scenario of the QCP is applied to three-dimensional (3D) Fermi liquids with an attractive

current-current interaction.
PACS: 71.10.—w, 71.27.+a

A statement that the Landau quasiparticle picture
breaks down at points of second—order phase transitions
has become a truism. The violation of this picture is
attributed to vanishing of the quasiparticle weight z in
the single-particle state since the analysis of a long wave-
length instability in the S = 1 particle-hole channel,
performed more than forty years ago by Doniach and
Engelsberg [1] and refined later by Dyugaev. [2] In non-
superfluid Fermi systems, the z-factor is determined by
the formula z = [1 — (0%(p,¢)/0€),]~" where the sub-
script 0 indicates that the respective derivative of the
mass operator X is evaluated at the Fermi surface. This
factor enters a textbook formula

w28 o

for the ratio M*/M of the effective mass M* to the
mass M of a free particle. As seen from this formula,
where €0 = p?/2M, the effective mass diverges at a
critical density p., where z vanishes provided the sum
1+ (62(1),5 = 0)/662)0 has a positive and finite value
at this point. Nowadays, when studying critical fluc-
tuations of arbitrary wave-lengths & < 2pr has become
popular, this restriction is often assumed to be met with-
out stipulations. E.g. a standard scenario of the quan-
tum critical point (QCP) where M* diverges is formu-
lated as follows: in the vicinity of an impending second-
order phase transition, “quasiparticles get heavy and
die” [3, 4].

However, as seen from Eq.(1), M* may diverge not
only at the points of the second-order phase transi-

M
M*

=z
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tions, but also at a critical density po,, where the sum
1+ (0%(p,€)/0ey),, changes its sign. Furthermore, we
will demonstrate that except for the case of the ferro-
magnetic instability, [1] M* cannot diverge at p. without
violation of stability conditions.

In what follows we restrict ourselves to one-
component three-dimensional (3D) homogeneous Fermi
liquids where the particle momentum is conserved,
and the Landau equation, connecting the quasiparticles
group velocity de/0p to their momentum distribution
n(p) in terms of the interaction function f, has the form
[5-7]

Oep) _ P n(p1) &p

Setting here p = pr and introducing the notation vy =
(de(p)/ dp)o = pr/M*, one obtains

PF prM
=y _
o =22 (122805, ®)
implying that
M 1 pFM
el e I @

Hereafter we employ notations of Fermi liquid (FL) the-
ory where f; is the first harmonic of the interaction func-
tion f(8) = 2°T“(pp, pr;0), with T being the w-limit
of the scattering amplitude I" of two particles, whose en-
ergies and incoming momenta p;,p2 lie on the Fermi
surface, with cosé = p; - p2/p%, while the 4-momentum

transfer (q,w) approaches zero, such that g/w — 0.
It is instructive to rewrite Eq.(4) in terms of the k-
limit of the dimensionless scattering amplitude vT'* =
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= A+Bo,0s where v = 2%pp M* /7% is the quasiparticle
density of states. Simple algebra then yields

M
M*

1
=1-_-A4A;.
34 )

This formula stems from Eq.(4) and relation [5-7] 41 =
®,/(1+ ®1/3), where & is the spin-independent part of
the product vT“. Thus at the density p,, where the
effective mass diverges one has

Al (poo) = 3)

In the following we focus on critical density fluctu-
ations with k. # 0, addressed in Ref.[8]. First we no-
tice that there is a strong dependence of the amplitude
Topns(P1, P2, k,w = 0) on the momentum transfer k
close to the critical momentum k., specifying the spec-
trum of density fluctuations, that stems from the asym-
metry of I' with respect to the interchange of momenta
and spins of colliding particles [2]. In this case, upon
neglecting regular components one finds [2]

®1(poo) = 00. (6)

1
A(pla P2, ka wZO; p— pc): - D(k)+§D(p1_p2+k)’
(7)

with

g
PR
the correlation length £(p) diverging at p = p..

Within the quasiboson approximation [8], the deriva-
tive (0%(p,€)/0¢), diverges at p — p. as £(p), while the
derivative (0% (p,¢) /Beg) , remains finite at any k.. If
these results were correct, then the densities po, and p.
would coincide, in agreement with the standard scenario
of the QCP. However, calculations of harmonics Ag(p)
of the amplitude A(pr, pr,cosf) from Eqs.(7) and (8)
yield

Dk — k., w=0)=

ke ke
A (p—)pc)zgz {(p)’ Al(P%Pc):gsg jz(p)
F

cos .
2

(9)

We see that the sign of A;(p — p.), coinciding with
that of cosfy = 1 — k?/2p%, turns out to be negative
at k. > prv/2. According to Eq.(5) this implies that at
the point of the second—order phase transition, the ratio
M*(p.)/M < 1. Thus we infer that at k. > prv/2, the
densities p. and po, cannot coincide. In its turn, this
implies that vanishing of the z-factor at p. is compen-
sated by the divergence of the derivative (0% (p,€)/8€9)o
at this point, otherwise Eq.(1) fails.

To verify this assertion let us write down a fun-
damental FL relation [7] between the k- and w-limits
8 IIucema B JRAATD® ToOM 86
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of the vertex 7 that has the symbolic form 7% =

= T¥+(T*((G?)* — (G*)“)T*“) where external brackets

mean integration and summation over all intermediate

momemtum and spin variables. In dealing with the bare

vertex 79 = p the extended form of this relation is
9G~'(p) _ 0G~'(p)

_ P
ap  0e M

+ 50 [T00) ((6°@)" - (€ @)") %

8G'(q) q d'q
dgo M (2m)%’ (10)

In writing this equation the Pitaevskii identities [7]

_9G(p,e)
op ’

G~ (p,e)

T @) = () = =2 (1)

are employed. Upon inserting the FL formula
k w .V
(G*(@)" = (G*(a)" - 27r31p—2 o(e)d(p —pr) (12)
F

into Eq. (10) and the standard replacement of the spin-
independent part of vT'* by A, after some algebra we are
led to equation

(), (- (), (-am).

(13)

Remembering that —8G~1(p,e)/0p = 2~ 'de(p)/dp one
arrives [7] at Eq.(5). On the other hand, as seen from
Eq.(10), at k. > prv/2 where A; < 0, the derivative
(0% (p,€)/0€Y) , does diverge at the same density, as the
derivative (0X(p,€)/0€),, in contrast to the result [8].
To correct the defect of the quasiboson approximation
[8], the spin-independent part of the scattering ampli-
tude I entering the formulas [8] for the derivatives of
the mass operator ¥ should be replaced by that of the
amplitude I'” (for details, see Ref.[2]).

We will immediately see that at finite k. < prv/2,
vanishing of the z-factor is incompatible with the di-
vergence of M* as well. Indeed, as seen from Eq.(9),
the harmonics Ag(p.) and A;(p.) are related to each
other by equation Ag(p.) = A1(p.)/(3 cosby). If M*(p.)
were infinite, then according to Eq.(5), A1(p.) would
equal 3, and Ag(p;) = 1/ cosfy. However, the quantity
Ag = ®¢/(1+ ) cannot be in excess of 1, otherwise the
Pomeranchuck stability condition [6, 7] &9 > —1 is vio-
lated, and the compressibility turns out to be negative.
Thus the QCP cannot be reached without the violation
of the stability condition. If so, approaching the QCP,
the system undergoes a first—order phase transition, as
in the case of 3D liquid 3He.
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The finiteness of M* at the points of vanishing of the
z-factor requires an alternative explanation, ( see e.g.
Ref.[9]), of the logarithmic enhancement of the specific
heat C(T'), observed in many heavy fermion metals [10]
and attributed to contributions of critical fluctuations.

Let us now turn to the analysis of another opportu-
nity for the occurrence of the QCP, addressed first in
microscopic calculations of the single-particle spectrum
of 3D electron gas [11, 12]. It is associated with the
change of the sign of the sum 1 + (8%(p,e)/dep)o at
Poo 7 Pe- In this case, the z-factor keeps its finite value,
and hence, the quasiparticle picture holds on both the
sides of the QCP. In standard Landau theory, equation

€(p,T =0) = p, (14)

with u, being the chemical potential, has the single root,
determining the Fermi momentum pr. Suppose, at a
critical coupling constant gr, a bifurcation in Eq.(14)
emerges, then beyond the critical point, at g > gr, this
equation acquires, at least, two new roots that triggers a
topological phase transition [13]. In many-body theory,
equation, determining critical points of the topological
phase transitions, has the form

e + 3(p,e = 0) = p. (15)

Significantly, terms, proportional to €ln ¢, existing in the
mass operator ¥ of marginal Fermi liquids, do not enter
this equation.

The bifurcation p, in Eqgs.(14) and (15) can emerge
at any point of momentum space. If p, coincides with
the Fermi momentum pp, then at the critical density the
sum 1+ (0%(p,e)/8e))o vanishes, and one arrives at the
topological quantum critical point. In connection with
this scenario, it is instructive to trace the evolution of
the group velocity vp = (de/dp)o versus the first har-
monic fi. As follows from Eq.(3), vr keeps its positive
sign as long as FY = prM f1/3n% < 3, and the Lan-
dau state with the quasiparticle momentum distribution
np(p) = 0(p — pr) remains stable. However, at F} > 3,
the sign of vp changes, and the Landau state is neces-
sarily rearranged. This conclusion is in agreement with
results of microscopic calculations of the single-particle
spectrum €(p, T = 0) of 2D electron gas, [14] shown in
Figure. As seen, the sign of vp holds until the dimen-
sionless parameter r, attains a critical value r,. ~ 7.0.
At greater r,, the derivative (de(p)/dp),, evaluated with
the momentum distibution ng(p), becomes negative, and
the Landau state loses its stability, since the curve e(p)
crosses the Fermi level more than one time.

At T = 0, two types of the topological transitions
are known [13]. One of them, giving rise to the multi-
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Single-particle spectrum e(p) of a homogeneous 2D elec-
tron gas in units of €% = p%/2M, evaluated [14] at
T = 0 for different values of the dimensionless parame-
ter r, = \/fMez/pF

connected Fermi surface, was uncovered [15] and stud-
ied later [16-18,9] in calculations of the single-particle
spectrum €(p) on the base of Eq. (2), with the inter-
action function f(k), having no singularities at £k — 0.
In this case, beyond the QCP, Eq.(14) has three roots
p1 < p2 < ps, i-e. the curve €(p) crosses the Fermi level
three times, and occupation numbers are: n(p) = 1 at
p < p1,n(p) =0 at py < p < pa, while at p» < p < ps,
once again n(p) = 1, and at p > ps, n(p) = 0. As the
coupling constant g increases, the number of the roots
of Eq.(14) rapidly grows, however, their number remains
countable at any g > gr.

The situation changes in Fermi liquids with a singu-
lar attractive long-range current-current term

— (p1k) (p2k) /K2
I(p1, p2, k,w = 0) = —g P2 (P;2)(P2 L

(16)

since in these systems, e.g. in dense quark-gluon plasma,
solutions with the multi-connected Fermi surface are un-
stable. Indeed, the group velocity de(p)/dp evaluated
with ng(p) = 0(p — pr) from Eq. (2) has the form
de(p)/dp = pr/M — gln(2pr/|pF — pl), implying that
Eq.(14) has three different roots p1, p2, p3, correspond-
ing to the Fermi surface, having three sheets at any g > 0
[19]. However, at the next iteration step, the new Fermi
surface has already five sheets, the Fermi surface has
seven sheets and so on [19]. With increasing the num-
ber of iterations, the distance between neighbour sheets
rapidly shrinks. In this situation, a minute elevation of
temperature renders the momentum distribution n(p, T')
a smooth T-independent function n.(p), different from
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0 and 1 in a domain C between the sheets. In this case,
the ground—state stability condition,

3
38 = [(e) - i)z ts >0, an)

requiring the nonnegativity of the variation JE of the
ground state energy E at any admissable variation of
n.(p), is met provided

€p)=n, pecC. (18)
As a result, we arrive at another type of the topologi-
cal transitions, the so-called fermion condensation [20 -
24,13, 25], where the roots of Eq.(14) form an uncount-
able set, called the fermion condensate (FC). Since the
quasiparticle energy €(p) is nothing but the derivative
of the ground state energy E with respect to the qua-
siparticle momentum distribution n(p), Eq.(18) can be
rewritten as variational condition [20]

SE/én(p)=p, pecC. (19)
The FC Green function has the form
_1-—n.(p)  ni(p)
G(p,e) = 5 Ti_m; PEC (20)

As seen, only the imaginary part of the FC Green func-
tion differs from that of the ordinary FL Green function.
This difference exhibits itself in a topological charge,
given by the integral [21, 13]

N= / Cp,e) a,a@,a)%, (21)

where integration is performed over a contour in com-
plex energy plane, embracing the Fermi surface. For
conventional Fermi liquids and systems with the multi-
connected Fermi surface, the topological charge N is in-
teger, while for the states with a FC, its value is half-
integer [21, 13].

For illustration of the phenomenon of fermion con-
densation, let us address dense quark-gluon plasma, on
the Lifshitz phase diagram of which, as we have seen,
there is no room for the conventional FL phase [26].
Upon inserting into Eq.(2) only leading divergent terms
in the interaction function f, constructed from Eq.(16),
one finds

1 "
021_)\/1117%7(%1)‘”1, z,z; €C, (22)
|z —z1] Oz1

where dimensionless variables z = (pr — p)/2pr and A
are introduced. A numerical solution of this equation
IMucema B AT® Tom 86
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will be found elsewhere. Here we simplify Eq.(22), re-
placing the kernel In(1/|z — z1|) by In(1/z) provided
z > z1, and by In(1/z;), otherwise, to obtain

N (21)

0=1+)\n*(z)lnz+)\/lnwlaax dzy, z,z; €C.
1

(23)

An approximate solution of this equation is n.(z) =
= z/x,, where z,, = e /> is determined from condition
n(z,) = 1. We see that the range of the interval [0, z,,]
of fermion condensation, adjacent to the Fermi surface,
is exponentially small.

Nontrivial smooth solutions n.(p) of Eq.(19) exist
even in weakly correlated Fermi systems. However, in
these systems, the Pauli restriction n.(p) < 1 is vio-
lated, rendering such solutions meaningless. Even at
the QCP, where the nonsingular interaction function f
is already sufficiently strong, no consistent FC solutions
n.(p) exist, satisfying the requirement n(p) < 1 wher-
ever. These solutions emerge at a critical constant grc,
and at ¢ > grc, they win the contest with any other
solutions. Thus on the Lifshitz phase diagram of sys-
tems with nonsingular repulsive interaction functions f,
the standard FL phase occupies the interval g < gr, the
phase with the multi-connected Fermi surface, the inter-
val gr < g < grc, while the phase with the FC exists
at g > grc-.

In dealing with the full (T — g) phase diagram of
such systems we notice that the temperature evolution
of the quasiparticle momentum distribution, associated
at T = 0 with the multi-connected Fermi surface, de-
pends on the departure of the difference |e(p) — | from
0 in the domain C. Its maximimu value ¢,, determines
a new energy scale €, ~ d?>/M*(0), where d is the av-
erage distance between the sheets of the Fermi surface
that rapidly falls with the increase of the sheets num-
ber [15, 16]. If temperature T attains values, compa-
rable with €,,, then, as seen from the Landau formula
n(p) = [1 + exp (e(p) — p)/T)] 1, the distribution n(p)
becomes a smooth function of p. Employing the FC no-
tation n,(p) for this function, one finds that at 7' > €,
the spectrum

e(p,T) = Ttn 21— ®)

() pecC (24)

does coincide with the FC spectrum [22]. We infer that
at T ~ €, a crossover from a state with the multi-
connected Fermi surface to a state with the FC occurs.
As a result, FL thermodynamics of the systems with
the multi-connected Fermi surface completely alters at

3*
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T ~ €, since properties of systems with the FC, in par-
ticular the magnetic susceptibility x(T'), resemble those
of a gas of localized spins [27]. Such a transition was
recently observed in the heavy—fermion metal YblIrsSis,
transition temperature being merely 1K [28].

Let us now turn to systems of fermions, interacting
with a “foreign” bosonic mode, e.g. phonons or photons.
In the Frolich model, [7, 29] aimed for the elucidation of
electron and phonon spectra in solids, electrons share
momentum with the lattice due to the electron-phonon
interaction. The non-conservation of the electron mo-
mentum results in the violation of the second of the re-
lations (11), and Eq.(4) acquires the form

M _ (aT*(p)) 1

where n = p/p. The departure of the ratio M/M*
from the Landau value (4), is well pronounced in the
limit ¢; <« vp. For illustration, let us consider the
weak coupling limit of the Frolich model, where the
first harmonic A;, evaluated from the phonon propa-
gator D(|p1 — p2|,w = 0) equals 0 due to its isotropy. If
Eq.(4) were correct, then M*/M would equal 1. How-
ever, this is not the case: M*/M = 1+ g*prM/272,
where g is the electron-phonon coupling constant [29].
Evidently, if the ratio vg/cs drops, then the departure
from Eq. (4) falls due to weakening of the contribution
of the pole of the boson propagator. Such a situation oc-
curs just in the vicinity of the QCP, since at this point
VF = PF / M* =0.

So far information on the QCP properties of Fermi
liquids is extracted from measurements, carried out in
2D electron gas, 2D liquid *He and heavy—fermion met-
als. Here we restrict ourselves to several remarks, re-
serving a more detailed analysis for a separate paper.
Accurate measurements of the effective mass M* in di-
lute 2D electron gas are made on (100)- and (111)-silicon
MOSFET’s. [30—-33]. In principle, the divergence of
M*, observed in these experiments, can be associated
with critical spin-density fluctuations. However, exper-
imental data rules out a significant enhancement of the
Stoner factor. In many theories, ( see e.g. Ref.[34]), the
enhancement of M™* is related to disorder effects. How-
ever, the effective masses, specifying the electron spectra
of (100)- and (111)-silicon MOSFET’s, where disorder
is different, almost coincide with each other provided
dimensionless parameters 7, of the 2D Coulomb prob-
lem, are the same [33]. On the other hand, this coinci-
dence that agrees with results of microscopic calculations
[14] is straightforwardly elucidated within the topolog-
ical scenario of the QCP. There are reports on the di-
vergence of the effective mass in 2D liquid >He, (see e.g.

Refs. [35—38]). Furthermore, following [36], authors
of Ref.[38] reported that at the density p > 9.00nm™2,
the low-temperature limit of the product Tx(T') quickly
increases with increasing p. In addition, the ratio of
the specific heat C(T) to T does not obey FL theory
in this density region, since it increases with lowering
T. These facts can be interpreted as evidence for the
presence of the FC [24]. Unfortunately, so far the ac-
curacy of extremely difficult measurements of the ratio
C(T)/T at T < 1K, is insuflicient to properly evaluate
a low-temperature part of the entropy S and compare it
with the respective FC entropy, extracted from data on
x(T).

The divergence of the ratio C(T)/T, associated
with the QCP, is observed in several heavy—fermion
compounds [10, 39, 40]. Authors of the experimen-
tal article [40] claim that data on the Sommerfeld-
Wilson ratio Rgw = x(T)/C(T) in a doped compound
YbRh(Sig.05Geg.05)2 point to an enhancement of the
Stoner factor that has to be infinite at the point of
the ferromagnetic phase transition. However, evaluation
of the Stoner factor from experimental data in heavy-
fermion metals encounters difficulties, discussed in Ref.
[27]. Furthermore, with a correct normalization experi-
mental data [40] are explained without any enhancement
of the Stoner factor [27] that rules out the relevance of
the ferromagnetic phase transition to the QCP in this
metal. A different H-T phase diagram is constructed
for the heavy—fermion metal YbAgGe in Refs.[41]. On
this diagram, the FL phase is separated from a phase
with magnetic ordering by a significant domain of NFL
behavior. Such a separation is easily explained within
the topological scenario of the QCP, discussed in this
article.

In conclusion, in this article, two different scenarios
of the quantum critical point (QCP), a low-temperature
instability of the Landau state, related to the divergence
of the density of states N(0) ~ M*, are analyzed. We
discuss shortcomings of the conventional scenario of the
QCP, where the divergence of the effective mass M* is
attributed to vanishing of the quasiparticle weight in the
single-particle state. In a different, topological scenario,
associated with the change of the topology of the Fermi
surface at the QCP, the quasiparticle picture holds on
both the sides of the QCP. This scenario is in agreement
with microscopic calculations of the QCP in 2D electron
gas and does not contradict relevant experimental data
on 2D liquid 3He and heavy-fermion metals.
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