Home
For authors
Submission status

Current
Archive (English)
Archive
   Volumes 61-80
   Volumes 41-60
   Volumes 21-40
   Volumes 1-20
   Volumes 81-92
      Volume 92
      Volume 91
      Volume 90
      Volume 89
      Volume 88
      Volume 87
      Volume 86
      Volume 85
      Volume 84
      Volume 83
      Volume 82
      Volume 81
Search
VOLUME 87 (2008) | ISSUE 4 | PAGE 220
Muon content of ultra-high-energy air showers: Yakutsk data versus simulations
Abstract
We analyse a sample of 33 extensive air showers (EAS) with estimated primary energies above 2• 1019 eV and high-quality muon data recorded by the Yakutsk EAS array. We compare, event-by-event, the observed muon density to that expected from CORSIKA simulations for primary protons and iron, using SIBYLL and EPOS hadronic interaction models. The study suggests the presence of two distinct hadronic components, "light" and "heavy". Simulations with EPOS are in a good agreement with the expected composition in which the light component corresponds to protons and the heavy component to iron-like nuclei. With SYBILL, simulated muon densities for iron primaries are a factor of \sim 1.5 less than those observed for the heavy component, for the same electromagnetic signal. Assuming two-component proton-iron composition and the EPOS model, the fraction of protons with energies E>1019 eV is 0.52 +0.19-0.20 at 95% confidence level.